A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modulation in isocitrate dehydrogenase activity under citrate enrichment affects carbon and nitrogen fixations in the cyanobacterium Nostoc muscorum Meg 1. | LitMetric

The enzyme isocitrate dehydrogenase (IDH) converts isocitrate synthesized from citrate to α-ketoglutarate in the TCA cycle. In cyanobacteria, α-KG has an additional role where it donates its carbon skeleton for ammonium assimilation in the GS-GOGAT pathway thereby linking carbon and nitrogen metabolisms. Looking at this crucial function of IDH that makes α-KG available for both carbon and nitrogen assimilation, changes brought about in its activity under excess availability of citrate in a cyanobacterium was evaluated. Further, how these changes are transmitted downstream affecting carbon and nitrogen metabolisms were also evaluated. A 100 μM citrate supplementation induced IDH activity. Consequently, there was an increase in concentrations of photosynthetic pigments, D1 protein and RuBisCO as well as in PSII activity. Heterocyst differentiation was initiated and an upsurge in the activities of nitrogenase and GS were recorded. An enhancement in the total protein and carbohydrate content reiterated the positive influence of citrate enrichment on carbon and nitrogen fixation. The increase in the mRNA contents of IDH, D1 protein, RuBisCO, nitrogenase and GS indicated their induction at the genetic level. Finally, there was augmentation in total biomass production by ∼28%. Interestingly as citrate concentration was increased to 500 μM, both C- and N- fixations were highly compromised suggesting that even though citrate is an essential metabolite in the cells, it became toxic beyond a certain concentration to the organism. SEM and TEM studies showed no changes in the organism's morphology and ultra-structure in presence of 100 μM citrate while adverse changes were noticed in presence of 500 μM citrate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2021.03.018DOI Listing

Publication Analysis

Top Keywords

carbon nitrogen
20
citrate
9
isocitrate dehydrogenase
8
citrate enrichment
8
enrichment carbon
8
nitrogen metabolisms
8
100 μm citrate
8
protein rubisco
8
carbon
6
nitrogen
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!