We develop a convolutional neural network (CNN) model to predict the diffusivity of cations in nanoparticle-based electrolytes and use it to identify the characteristics of morphologies that exhibit optimal transport properties. The ground truth data are obtained from kinetic Monte Carlo (kMC) simulations of cation transport parametrized using a multiscale modeling strategy. We implement deep learning approaches to quantitatively link the diffusivity of cations to the spatial arrangement of the nanoparticles. We then integrate the trained CNN model with a topology optimization algorithm for accelerated discovery of nanoparticle morphologies that exhibit optimal cation diffusivities at a specified nanoparticle loading, and we investigate the ability of the CNN model to quantitatively account for the influence of interparticle spatial correlations on cation diffusivity. Finally, by using data-driven approaches, we explore how simple descriptors of nanoparticle morphology correlate with cation diffusivity, thus providing a physical rationale for the observed optimal microstructures. The results of this study highlight the capability of CNNs to serve as surrogate models for structure-property relationships in composites with monodisperse spherical particles, which can in turn be used with inverse methods to discover morphologies that produce optimal target properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.1c02004DOI Listing

Publication Analysis

Top Keywords

cnn model
12
nanoparticle-based electrolytes
8
convolutional neural
8
diffusivity cations
8
morphologies exhibit
8
exhibit optimal
8
cation diffusivity
8
prediction optimization
4
optimization ion
4
ion transport
4

Similar Publications

With the rising demand of saffron, it is essential to standardize the confirmation of its origin and identify any adulteration to maintain a good quality led market product. However, a rapid and reliable strategy for identifying the adulteration saffron is still lacks. Herein, a combination of headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and convolutional neural network (CNN) was developed.

View Article and Find Full Text PDF

Background: The National Lung Screening Trial (NLST) has shown that screening with low dose CT in high-risk population was associated with reduction in lung cancer mortality. These patients are also at high risk of coronary artery disease, and we used deep learning model to automatically detect, quantify and perform risk categorisation of coronary artery calcification score (CACS) from non-ECG gated Chest CT scans.

Materials And Methods: Automated calcium quantification was performed using a neural network based on Mask regions with convolutional neural networks (R-CNN) for multiorgan segmentation.

View Article and Find Full Text PDF

Energy consumption prediction using modified deep CNN-Bi LSTM with attention mechanism.

Heliyon

January 2025

Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia.

The prediction of energy consumption in households is essential due to the reliance on electrical appliances for daily activities. Accurate assessment of energy demand is crucial for effective energy generation, preventing overloads and optimizing energy storage. Traditional techniques have limitations in accuracy and error rates, necessitating advancements in prediction techniques.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a complex, progressive, and irreversible neurodegenerative disorder marked by cognitive decline and memory loss. Early diagnosis is the most effective strategy to slow the disease's progression. Mild Cognitive Impairment (MCI) is frequently viewed as a crucial stage before the onset of AD, making it the ideal period for therapeutic intervention.

View Article and Find Full Text PDF

Neoadjuvant chemotherapy (NAC) is a systemic and systematic chemotherapy regimen for breast cancer patients before surgery. However, NAC is not effective for everyone, and the process is excruciating. Therefore, accurate early prediction of the efficacy of NAC is essential for the clinical diagnosis and treatment of patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!