We develop a convolutional neural network (CNN) model to predict the diffusivity of cations in nanoparticle-based electrolytes and use it to identify the characteristics of morphologies that exhibit optimal transport properties. The ground truth data are obtained from kinetic Monte Carlo (kMC) simulations of cation transport parametrized using a multiscale modeling strategy. We implement deep learning approaches to quantitatively link the diffusivity of cations to the spatial arrangement of the nanoparticles. We then integrate the trained CNN model with a topology optimization algorithm for accelerated discovery of nanoparticle morphologies that exhibit optimal cation diffusivities at a specified nanoparticle loading, and we investigate the ability of the CNN model to quantitatively account for the influence of interparticle spatial correlations on cation diffusivity. Finally, by using data-driven approaches, we explore how simple descriptors of nanoparticle morphology correlate with cation diffusivity, thus providing a physical rationale for the observed optimal microstructures. The results of this study highlight the capability of CNNs to serve as surrogate models for structure-property relationships in composites with monodisperse spherical particles, which can in turn be used with inverse methods to discover morphologies that produce optimal target properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.1c02004 | DOI Listing |
Food Chem X
December 2024
School of Pharmacy, Naval Medical University, Shanghai 200433, China.
With the rising demand of saffron, it is essential to standardize the confirmation of its origin and identify any adulteration to maintain a good quality led market product. However, a rapid and reliable strategy for identifying the adulteration saffron is still lacks. Herein, a combination of headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and convolutional neural network (CNN) was developed.
View Article and Find Full Text PDFInt J Cardiol Heart Vasc
February 2025
Department of Radiology, Frimley Park Hospital NHS Foundation Trust, Camberley, Surrey, UK.
Background: The National Lung Screening Trial (NLST) has shown that screening with low dose CT in high-risk population was associated with reduction in lung cancer mortality. These patients are also at high risk of coronary artery disease, and we used deep learning model to automatically detect, quantify and perform risk categorisation of coronary artery calcification score (CACS) from non-ECG gated Chest CT scans.
Materials And Methods: Automated calcium quantification was performed using a neural network based on Mask regions with convolutional neural networks (R-CNN) for multiorgan segmentation.
Heliyon
January 2025
Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia.
The prediction of energy consumption in households is essential due to the reliance on electrical appliances for daily activities. Accurate assessment of energy demand is crucial for effective energy generation, preventing overloads and optimizing energy storage. Traditional techniques have limitations in accuracy and error rates, necessitating advancements in prediction techniques.
View Article and Find Full Text PDFBMC Geriatr
January 2025
Department of Creative Product Design, Asia University, Taichung, Taiwan.
Alzheimer's disease (AD) is a complex, progressive, and irreversible neurodegenerative disorder marked by cognitive decline and memory loss. Early diagnosis is the most effective strategy to slow the disease's progression. Mild Cognitive Impairment (MCI) is frequently viewed as a crucial stage before the onset of AD, making it the ideal period for therapeutic intervention.
View Article and Find Full Text PDFBMC Med Imaging
January 2025
Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
Neoadjuvant chemotherapy (NAC) is a systemic and systematic chemotherapy regimen for breast cancer patients before surgery. However, NAC is not effective for everyone, and the process is excruciating. Therefore, accurate early prediction of the efficacy of NAC is essential for the clinical diagnosis and treatment of patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!