Nicotinamide adenine dinucleotide (NAD) is a multifunctional molecule. Beyond redox metabolism, NAD has an equally important function as a substrate for post-translational modification enzymes, the largest family being the poly-ADP-ribose polymerases (PARPs, 17 family members in humans). The recent surprising discoveries of noncanonical NAD (NAD/NADH)-binding proteins suggests that the NAD interactome is likely larger than previously thought; yet, broadly useful chemical tools for profiling and discovering NAD-binding proteins do not exist. Here, we describe the design, synthesis, and validation of clickable, photoaffinity labeling (PAL) probes, 2- and 6-ad-BAD, for interrogating the NAD interactome. We found that 2-ad-BAD efficiently labels PARPs in a UV-dependent manner. Chemical proteomics experiments with 2- and 6-ad-BAD identified known and unknown NAD/NADH-binding proteins. Together, our study shows the utility of 2- and 6-ad-BAD as clickable PAL NAD probes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324298 | PMC |
http://dx.doi.org/10.1021/jacs.1c01302 | DOI Listing |
Nicotinamide mononucleotide adenylyl transferases 2 (NMNAT2) is a crucial nicotinamide adenine dinucleotide (NAD)-synthesizing enzyme essential for neuronal health. In the Religious Orders Study/Memory and Aging Project (ROSMAP), human brain levels of NMNAT2 mRNA positively correlated with cognitive capabilities in older adults. NMNAT2 mRNA abundance is significantly reduced following various insults or proteinopathies.
View Article and Find Full Text PDFNeurobiol Dis
October 2024
Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713, AV, Groningen, the Netherlands. Electronic address:
Int J Biol Macromol
October 2024
Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy. Electronic address:
The SARS-CoV-2 pandemic, responsible for approximately 7 million deaths worldwide, highlights the urgent need to understand the molecular mechanisms of the virus in order to prevent future outbreaks. The Spike glycoprotein of SARS-CoV-2, which is critical for viral entry through its interaction with ACE2 and other host cell receptors, has been a focus of this study. The present research goes beyond receptor recognition to explore Spike's influence on cellular metabolism.
View Article and Find Full Text PDFNPJ Syst Biol Appl
June 2024
Institute of Bioinformatics, University of Georgia, Athens, GA, USA.
Fructosamine-3-kinases (FN3Ks) are a conserved family of repair enzymes that phosphorylate reactive sugars attached to lysine residues in peptides and proteins. Although FN3Ks are present across the Tree of Life and share detectable sequence similarity to eukaryotic protein kinases, the biological processes regulated by these kinases are largely unknown. To address this knowledge gap, we leveraged the FN3K CRISPR Knock-Out (KO) HepG2 cell line alongside an integrative multi-omics study combining transcriptomics, metabolomics, and interactomics to place these enzymes in a pathway context.
View Article and Find Full Text PDFFructosamine-3-kinases (FN3Ks) are a conserved family of repair enzymes that phosphorylate reactive sugars attached to lysine residues in peptides and proteins. Although FN3Ks are present across the tree of life and share detectable sequence similarity to eukaryotic protein kinases, the biological processes regulated by these kinases are largely unknown. To address this knowledge gap, we leveraged the FN3K CRISPR Knock-Out (KO) cell line alongside an integrative multi-omics study combining transcriptomics, metabolomics, and interactomics to place these enzymes in a pathway context.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!