The structural response and plasticity of the cestode tegument in response to the influence of the host organism is not yet well understood. The main aims of our in vitro study were to analyse the ultrastructural mechanisms and kinetics of tegumental secretion in two cestode species, Dibothriocephalus dendriticus and Ligula interrupta, in response to the influence of fish host blood serum. The incubation of plerocercoids in the culture medium, which contained fish host blood serum, resulted in an increased number of secretory products on the tegumental surface. Our study is the first to experimentally demonstrate the formation of plerocercoid protective layers influenced by the host's internal environment factors. The mechanism of the generation of the protective layer included the following: the intensive formation of organelles in the tegumental cytons and their transfer to the distal cytoplasm of the tegument; increases in extracellular vesicles and vacuoles released on the tegumental surface; arrangement of secretory products and fine-dispersed extracellular matrix in layers; and formation of the protective layer. The structural tegumental response included increases in the glycocalyx layer and structural changes. Our study revealed that the universal mechanism of protective layer formation was intrinsic to different tapeworms. We hypothesize that plerocercoids of cestodes parasitizing fish may use tegumental secretion in the formation of a protective layer and in the release of immunoregulator molecules to evade the host's immune response.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfd.13386DOI Listing

Publication Analysis

Top Keywords

protective layer
16
tegumental secretion
12
ultrastructural mechanisms
8
mechanisms kinetics
8
kinetics tegumental
8
cestodes parasitizing
8
parasitizing fish
8
response influence
8
fish host
8
host blood
8

Similar Publications

Observationally-derived emissions of ozone depleting substances must be scrutinized to maintain the progress made by the Montreal Protocol in protecting the stratospheric ozone layer. Recent observations of three chlorofluorocarbons (CFCs), CFC-113, CFC-114, and CFC-115, suggest that emissions of these compounds have not decreased as expected given global reporting of their production. These emissions have been associated with hydrofluorocarbon (HFC) production, which can require CFCs as feedstocks or generate CFCs as by-products, yet emissions from these pathways have not been rigorously quantified.

View Article and Find Full Text PDF

Structural Color Contact Lenses from Cholesteric Cellulose Liquid Crystals.

Small Methods

December 2024

Institute of Translational Medicine, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.

Colored contact lenses have gained popularity among young individuals owing to their ability to alter the appearance of the wearer's eyes. However, conventional lenses containing chemical dyes are susceptible to detachment of the pigment layer, which can lead to corneal damage. In this research, a novel cellulose-based structural color contact lens (SCCL) is presented that enhances aesthetic appeal via a cholesteric liquid crystal (CLC) layer.

View Article and Find Full Text PDF

The COVID-19 pandemic has resulted in significant changes in our daily lives, including the widespread use of face masks. Face masks have been reported to reduce the transmission of viral infections by droplets; however, improper use and/or treatment of these masks can cause them to be contaminated, thereby reducing their efficacy. Moreover, regular replacement of face masks is essential to maintaining their effectiveness, which can be challenging in resource-limited healthcare settings.

View Article and Find Full Text PDF

Background: Flavonoids are among the most important compounds found in plants, since laboratory studies have shown them to be a daily requirement in human diets due to their various health benefits. Therefore, this study focused on extracting, purifying, and measuring the antioxidant activity of the flavonoid quercetin, which is widely found in plants and possesses a variety of biological activities, from different plant sources.

Methods: The extraction of quercetin was performed using several methods (chemical, physical, and enzymatic) and several extraction solutions (water, ethanol, and chloroform) from several plants (spinach, dill, Onion Skin, , sumac, digalkhasab chemri, and leelwi chemri).

View Article and Find Full Text PDF

In the contemporary field of life sciences, researchers have gradually recognized the critical role of microbes in maintaining human health. However, traditional biological experimental methods for validating the association between microbes and diseases are both time-consuming and costly. Therefore, developing effective computational methods to predict potential associations between microbes and diseases is an important and urgent task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!