MXDs are transcription repressors that antagonize MYC-mediated gene activation. MYC, when associated with MIZ1, acts also as a repressor of a subset of genes, including p15 and p21. A role for MXDs in regulation of MYC-repressed genes is not known. We report that MXDs activate transcription of p15 and p21 in U2OS cells. This activation required DNA binding by MXDs and their interaction with MIZ1. MXD mutants deficient in MIZ1 binding interacted with the MYC-binding partner MAX and were active as repressors of MYC-activated genes but failed to activate MYC-repressed genes. Mutant MXDs with reduced DNA-binding affinity interacted with MAX and MIZ1 but neither repressed nor activated transcription. Our data show that MXDs and MYC have a reciprocally antagonistic potential to regulate transcription of target genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1873-3468.14097 | DOI Listing |
Hum Mol Genet
December 2022
Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.
Long non-coding RNAs (lncRNAs) are involved in many normal and oncogenic pathways through a diverse repertoire of transcriptional and posttranscriptional regulatory mechanisms. LncRNAs that are under tight regulation of well-known oncogenic transcription factors such as c-Myc (Myc) are likely to be functionally involved in their disease-promoting mechanisms. Myc is a major driver of many subsets of B cell lymphoma and to date remains an undruggable target.
View Article and Find Full Text PDFCancer Immunol Res
July 2022
Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
The MYC oncogene is frequently amplified in triple-negative breast cancer (TNBC). Here, we show that MYC suppression induces immune-related hallmark gene set expression and tumor-infiltrating T cells in MYC-hyperactivated TNBCs. Mechanistically, MYC repressed stimulator of interferon genes (STING) expression via direct binding to the STING1 enhancer region, resulting in downregulation of the T-cell chemokines CCL5, CXCL10, and CXCL11.
View Article and Find Full Text PDFLife Sci Alliance
July 2022
Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
Methylation and demethylation of cytosines in DNA are believed to act as keystones of cell-specific gene expression by controlling the chromatin structure and accessibility to transcription factors. Cancer cells have their own transcriptional programs, and we sought to alter such a cancer-specific program by enforcing expression of the catalytic domain (CD) of the methylcytosine dioxygenase TET2 in breast cancer cells. The TET2 CD decreased the tumorigenic potential of cancer cells through both activation and repression of a repertoire of genes that, interestingly, differed in part from the one observed upon treatment with the hypomethylating agent decitabine.
View Article and Find Full Text PDFMXDs are transcription repressors that antagonize MYC-mediated gene activation. MYC, when associated with MIZ1, acts also as a repressor of a subset of genes, including p15 and p21. A role for MXDs in regulation of MYC-repressed genes is not known.
View Article and Find Full Text PDFEMBO Rep
March 2021
Guangzhou First People's Hospital, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China.
The MYC oncoprotein activates and represses gene expression in a transcription-dependent or transcription-independent manner. Modification of mRNA emerges as a key gene expression regulatory nexus. We sought to determine whether MYC alters mRNA modifications and report here that MYC promotes cancer progression by down-regulating N6-methyladenosine (m A) preferentially in transcripts of a subset of MYC-repressed genes (MRGs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!