Objectives: Osteoporosis is a multifactorial disease that causes a loss of bone density. However, genetic factors play an increasingly important role in its development. To thoroughly understand the molecular mechanisms, polymorphic variants of genes candidate for osteoporosis are still being sought. The aim of our study was to investigate the influence of NFκB1 gene rs4648068 (A>G) and RUNX2 gene rs7771980 (-1025T>C) polymorphisms on the risk of osteoporosis.

Material And Methods: A group of 675 postmenopausal Caucasian women (109 women with osteopenia, 333 with osteoporosis and 233 with normal T-score) were examined. The bone mineral density (BMD) at the lumbar spine (L1-L4) was measured by dual energy x-ray absorptiometry (DXA). The analysis of NFκB1 and RUNX2 polymorphisms was performed using real-time PCR method.

Results: Analysis of NFκB1 gene rs4648068 polymorphism showed that the GG genotype was slightly more frequent in the study groups compared to the control group. In the osteoporosis group, patients with the G allele in the genotype have lower bone mineral density values. For the RUNX2 rs7771980 polymorphism, in women with osteopenia we observed an increased incidence of TC heterozygotes compared to the control group (29.40% vs 24.90%, p > 0.05), and in women with osteoporosis, the TT genotype was more common (78.70% vs 73.80%, p > 0.05). No correlation was observed between the genotypes and the clinical parameters.

Conclusions: The analysis showed no significant relationship between the genotypic distribution and the individual clinical parameters. However, it is suggested an association between the rs4648068 polymorphism of the NFκB1 gene and an increased risk of developing osteoporosis.

Download full-text PDF

Source
http://dx.doi.org/10.5603/GP.a2021.0044DOI Listing

Publication Analysis

Top Keywords

nfκb1 gene
12
runx2 rs7771980
8
gene rs4648068
8
women osteopenia
8
bone mineral
8
mineral density
8
analysis nfκb1
8
rs4648068 polymorphism
8
compared control
8
control group
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!