Importance: The association of the nasal microbiome with outcomes in surgical patients is poorly understood.
Objective: To characterize the composition of nasal microbiota in patients undergoing clean elective surgical procedures and to examine the association between characteristics of preoperative nasal microbiota and occurrence of postoperative infection.
Design, Setting, And Participants: Using a nested matched case-control design, 53 individuals who developed postoperative infection were matched (approximately 3:1 by age, sex, and surgical procedure) with 144 individuals who were not infected (ie, the control group). The 2 groups were selected from a prospective cohort of patients undergoing surgical procedures at 2 tertiary care university hospitals in Baltimore, Maryland, who were at high risk for postoperative infectious complications. Included individuals were aged 40 years or older; had no history of autoimmune disease, immunocompromised state, immune-modulating medication, or active infection; and were scheduled to undergo elective cardiac, vascular, spinal, or intracranial surgical procedure. Data were analyzed from October 2015 through September 2020.
Exposures: Nasal microbiome cluster class served as the main exposure. An unsupervised clustering method (ie, grades of membership modeling) was used to classify nasal microbial samples into 2 groups based on features derived from 16S ribosomal RNA gene sequencing. The microbiome cluster groups were derived independently and agnostic of baseline clinical characteristics and infection status.
Main Outcomes And Measures: Composite of surgical site infection, bacteremia, and pneumonia occurring within 6 months after surgical procedure.
Results: Among 197 participants (mean [SD] age, 64.1 [10.6] years; 63 [37.7%] women), 553 bacterial taxa were identified from preoperative nasal swab samples. A 2-cluster model (with 167 patients in cluster 1 and 30 patients in cluster 2) accounted for the largest proportion of variance in microbial profiles using grades of membership modeling and was most parsimonious. After adjusting for potential confounders, the probability of assignment to cluster 2 was associated with 6-fold higher odds of infection after surgical procedure (odds ratio [OR], 6.18; 95% CI, 3.33-11.7; P < .001) independent of baseline clinical characteristics, including nasal carriage of Staphylococcus aureus. Intrasample (ie, α) diversity was inversely associated with infectious outcome in both clusters (OR, 0.57; 95% CI, 0.42-0.75; P < .001); however, probability of assignment to cluster 2 was associated with higher odds of infection independent of α diversity (OR, 4.61; 95% CI, 2.78-7.86; P < .001).
Conclusions And Relevance: These findings suggest that the nasal microbiome was an independent risk factor associated with infectious outcomes among individuals who underwent elective surgical procedures and may serve as a biomarker associated with infection susceptibility in this population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085724 | PMC |
http://dx.doi.org/10.1001/jamanetworkopen.2021.8386 | DOI Listing |
PLoS One
January 2025
Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States of America.
Background: Surveillance cultures to identify patients colonized with methicillin-resistant Staphylococcus aureus (MRSA) is recommended at pediatric intensive care unit (PICU) admission but doesn't capture other methicillin-resistant Staphylococcus and is resource intensive. We determined the prevalence and identified nasal microbiome predictors for methicillin-resistant Staphylococcus colonization at the time of PICU admission.
Study Design: A prospective cohort study was performed in a 20-bed pediatric intensive care unit (PICU) between 2020-2021.
Electrophoresis
January 2025
Institute of Forensic Science, Fudan University, Shanghai, P. R. China.
The human skin and oral cavity harbor complex microbial communities, which exist in dynamic equilibrium with the host's physiological state and the external environment. This study investigates the microbial atlas of human skin and oral cavities using samples collected over a 10-month period, aiming to assess how both internal and external factors influence the human microbiome. We examined bacterial community diversity and stability across various body sites, including palm and nasal skin, saliva, and oral epithelial cells, during environmental changes and a COVID-19 pandemic.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Otolaryngology, Peking University Third Hospital, Haidian District, No. 49 Huayuan North Road, Beijing, 100191, People's Republic of China.
Background: Dysbiosis of the nasal microbiome is considered to be related to the acute exacerbation of chronic rhinosinusitis (AECRS). The microbiota in the nasal cavity of AECRS patients and its association with disease severity has rarely been studied. This study aimed to characterize nasal dysbiosis in a prospective cohort of patients with AECRS.
View Article and Find Full Text PDFMicroorganisms
December 2024
The BioArte Ltd., Life Science Park, Triq San Giljan, 3000 San Gwann, Malta.
The human respiratory tract is colonized by a complex microbial community that helps maintain respiratory health and plays a crucial role in defending the host from infections. Respiratory viruses have been demonstrated to alter microbiota composition, resulting in opportunistic species expansion, and increasing the disease severity and host susceptibility to bacterial co-infections. This study aims to examine the compositional differences in the nasal microbiota between SARS-CoV-2-infected and non-infected patients.
View Article and Find Full Text PDFMicroorganisms
December 2024
Beef Cattle Institute, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
Metaphylaxis or treating the entire population of cattle at arrival with an antimicrobial has been studied extensively in the cattle industry; however, little information is available on the impacts of treating only a proportion of the population with antimicrobials at arrival. The study objective was to determine potential associations between the proportion of animals in a pen treated with antimicrobial therapy with pen performance and nasopharyngeal microbiome. Yearling steers (n = 160) were randomly allocated to study pens (n = 40) and pens were systematically randomized to one of two antimicrobial treatments (META: all four head received tulathromycin; MIXED: two of four head randomly selected to receive tulathromycin).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!