Construction of Bio-Nano Interfaces on Nanozymes for Bioanalysis.

ACS Appl Mater Interfaces

College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.

Published: May 2021

Nanomaterials with enzyme-like activity (nanozymes) have been of great interest in broad applications ranging from biosensing to biomedical applications. Despite that much effort has been devoted to the development of the synthesis and applications of nanozymes, it is essential to understand the interactions between nanozymes and most commonly used biomolecules, i.e., avidin, streptavidin (SA), bovine serum albumin (BSA), immunoglobulin G (IgG), and glutathione (GSH), yet they have been rarely explored. Here, a series of bio-nano interfaces were constructed through direct immobilization of proteins on a variety of iron oxide and carbon-based nanozymes with different dimensions, including FeO nanoparticles (NPs, 0D), FeO@C NPs (0D), FeO@C nanowires (NWs, 1D), and graphene oxide nanosheets (GO NSs, 2D). Such interfaces enabled the modulation of the catalytic activities of the nanozymes with varying degrees, which allowed a good identification of multiplex proteins with high accuracy. Given the maximum inhibition on FeO@C NP by BSA, we established molecular switches based on aptamer and toehold DNA, as well as Boolean logic gates (AND and NOR) in response to both DNA and proteins. Also importantly, we developed an on-particle reaction strategy for colorimetric detection of GSH with ultrahigh sensitivity and good specificity. The proposed sensor achieved a broad dynamic range spanning 7 orders of magnitude with a detection limit down to 200 pg mL, which was better than that of an in-solution reaction-based biosensor by 2 orders of magnitude. Furthermore, we explored the mechanisms of the interactions at bio-nano interfaces by studying the interfacial factors, including surface coverage, salt concentration, and the curvature of the nanozyme. This study offered new opportunities in the elaborate design and better utilization of nanozymes for bioanalysis in clinical diagnosis and in vivo detection.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c04241DOI Listing

Publication Analysis

Top Keywords

bio-nano interfaces
12
nanozymes bioanalysis
8
nps feo@c
8
orders magnitude
8
nanozymes
7
construction bio-nano
4
interfaces
4
interfaces nanozymes
4
bioanalysis nanomaterials
4
nanomaterials enzyme-like
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!