Background: Intravenous contrast agents are routinely used in CT imaging to enable the visualization of intravascular pathology, such as with abdominal aortic aneurysms. However, the injection is contraindicated in patients with iodine allergy and is associated with renal complications.

Objectives: In this study, we investigate if the raw data acquired from a noncontrast CT image contains sufficient information to differentiate blood and other soft tissue components. A deep learning pipeline underpinned by generative adversarial networks was developed to simulate contrast enhanced CTA images using noncontrast CTs.

Methods And Results: Two generative models (cycle- and conditional) are trained with paired noncontrast and contrast enhanced CTs from seventy-five patients (total of 11,243 pairs of images) with abdominal aortic aneurysms in a 3-fold cross-validation approach with a training/testing split of 50:25 patients. Subsequently, models were evaluated on an independent validation cohort of 200 patients (total of 29,468 pairs of images). Both deep learning generative models are able to perform this image transformation task with the Cycle-generative adversarial network (GAN) model outperforming the Conditional-GAN model as measured by aneurysm lumen segmentation accuracy (Cycle-GAN: 86.1% ± 12.2% vs Con-GAN: 85.7% ± 10.4%) and thrombus spatial morphology classification accuracy (Cycle-GAN: 93.5% vs Con-GAN: 85.7%).

Conclusion: This pipeline implements deep learning methods to generate CTAs from noncontrast images, without the need of contrast injection, that bear strong concordance to the ground truth and enable the assessment ofimportant clinical metrics. Our pipeline is poised to disrupt clinical pathways requiring intravenous contrast.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8691372PMC
http://dx.doi.org/10.1097/SLA.0000000000004835DOI Listing

Publication Analysis

Top Keywords

deep learning
16
intravenous contrast
12
contrast agents
8
abdominal aortic
8
aortic aneurysms
8
contrast enhanced
8
generative models
8
patients total
8
pairs images
8
accuracy cycle-gan
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!