Fusobacterium nucleatum is a gram-negative and anaerobic oral commensal that is implicated in inflammatory conditions of the tooth-supporting structures, that is, periodontal diseases. One of the main characteristics of these conditions is an accumulation of neutrophil granulocytes in the gingival pockets where bacteria reside. Neutrophils are recruited to tissue-residing microbes by gradients of bacteria derived chemoattractants, and the cellular migration over the pocket epithelium into the gingival pocket is likely governed by chemoattractants released by the amino acid fermenting anaerobes typically colonising this site. However, the chemoattractants released by F. nucleatum and other oral anaerobes have long been unidentified. In the present study, we show that the major chemoattractants released during the growth of F. nucleatum are short chain fatty acids (SCFAs), primarily acetate and butyrate. These SCFAs, that are released at high levels as end-products of the metabolism of F. nucleatum, trigger chemotaxis of human neutrophils, as well as cytosolic Ca signals, via free fatty acid receptor 2 (FFAR2). This finding establishes the SCFA-FFAR2 interaction as an important mechanism in the recruitment of neutrophils to the periodontal pocket, but could also be of importance in the pathogenesis of other medical conditions involving colonisation/infection of F. nucleatum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cmi.13348 | DOI Listing |
Chin Med
January 2025
Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China.
Background: Paclitaxel-induced peripheral neuropathy (PIPN) is prevalent among patients receiving paclitaxel chemotherapy, which results in sensory abnormality as well as neuropathic pain. Conventional medications lack effectiveness on PIPN. Clinical trials identified beneficial effects of acupuncture on PIPN among patients receiving chemotherapy.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University Tallahassee, FL 32307, The United States.
The tumor immune microenvironment (TIME) plays a critical role in cancer development and response to immunotherapy. Immune checkpoint inhibitors aim to reverse the immunosuppressive effects of the TIME, but their success has been limited. Immunotherapy directed at PD-1/PD-L1 has been widely employed, yielding positive results.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.
Background: Ewing's sarcoma (EwS), a common pediatric bone cancer, is associated with poor survival due to a lack of therapeutic targets for immunotherapy or targeted therapy. Therefore, more effective treatment options are urgently needed.
Methods: Since novel immunotherapies may address this need, we performed an integrative analysis involving single-cell RNA sequencing, cell function experiments, and humanized models to dissect the immunoregulatory interactions in EwS and identify strategies for optimizing immunotherapeutic efficacy.
Int J Mol Sci
December 2024
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
Neutrophil extracellular traps (NETs) formation is a key process in inflammatory diseases like gout, but the underlying molecular mechanisms remain incompletely understood. This study aimed to establish a model to examine the formation of NETs induced by monosodium urate (MSU) and phorbol 12-myristate 13-acetate (PMA) and to elucidate their molecular pathways. Laser confocal microscopy was used to visualize NET formation, while flow cytometry was employed to detect reactive oxygen species (ROS) production.
View Article and Find Full Text PDFCells
December 2024
School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia.
Chronic obstructive pulmonary disease (COPD) is characterized by progressive and incurable airflow obstruction and chronic inflammation. Both TGF-β1 and CXCL8 have been well described as fundamental to COPD progression. DNA methylation and histone acetylation, which are well-understood epigenetic mechanisms regulating gene expression, are associated with COPD progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!