Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Methylation of 5th residue of cytosine in CpG island forms 5-methylcytosine which is stable, heritable epigenetic mark. Methylation levels are broadly governed by methyltransferases and demethylases. An aberration in the demethylation process contributes to the silencing of gene expression. Ten eleven translocation (TET) dioxygenase (1-3) the de novo demethylase is responsible for conversion of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosisne (5-fC) and 5-carboxycytosine (5-caC) during demethylation process. Mutations and abnormal expression of TET proteins contribute to carcinogenesis. Discovery of TET proteins has offered various pathways for the reversal of methylation levels thus, enhancing our knowledge as to how methylation effects cancer progression.
Methods: We searched "PubMed" and "Google scholar" databases and selected studies with the following keywords "TET enzyme", "cancer", "5-hmC", and "DNA demethylation". In this review, we have discussed combinatorial use of vitamin C in inhibiting tumour growth by enhancing the catalytic activity of TET enzymes and consequently, increasing the 5-hmC levels. 5-Hydroxymethylcytosine holds promise as a prognostic biomarker in solid cancers. The contribution of induction and suppression of TET enzymes and 5-hmC carcinogenesis are discussed in haematological and solid cancers.
Results: We found that TET enzymes play central role in maintaining the methylation balance. Any anomaly in their expression may dip the balance towards cancer progression. Low levels of TET enzymes and 5-hmC correlate with tumour invasion, progression and metastasis. Also, use of vitamin C enhances TET activity.
Conclusion: TET enzymes play vital role in shaping the methylation landscape in body. 5-hmC can be used as prognostic marker in solid cancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00432-021-03641-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!