A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vancomycin- and Poly(simvastatin)-Loaded Scaffolds with Time-Dependent Development of Porosity. | LitMetric

Biodegradable scaffolds are widely use in drug delivery and tissue engineering applications. The scaffolds can be modified to provide the necessary mechanical support for tissue formation and to deliver one or more drugs to stimulate tissue formation or for the treatment of a specific condition. In the current study, we developed biodegradable scaffolds that have the potential for dual drug delivery. The scaffolds consisted of simvastatin-containing prodrug, poly(simvastatin) entrapped in poly(β-amino ester) (PBAE) porogen particles and vancomycin encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres, which were fused together around the PBAE porogens to create a slow-degrading matrix. Upon hydrolysis, poly(simvastatin) releases simvastatin acid, which has angiogenic and osteogenic properties, while the PLGA microspheres release vancomycin as an antibacterial agent. Degradation of PBAE porogens through hydrolysis of ester linkages led to the development of porosity in a controlled manner and led to water penetration that facilitated hydrolysis of PLGA. Higher porogen loading (~60% by weight) gave rise to ~70% interconnected porosity with pore spacing of ~180 μm. This open volume facilitated simvastatin acid release upon hydrolysis and entrapped vancomycin release via diffusion through and degradation of PLGA. During the study, ~162 μg of simvastatin acid and ~18 mg vancomycin were released from the highest porosity scaffolds. Bioactivity studies showed that released simvastatin acid stimulated preosteoblastic activity, indicating that scaffold fabrication did not damage the polymeric prodrug. Regarding mechanical properties, compressive modulus, failure strain, and failure stress decreased with increasing PBAE porogen content. These dual drug releasing scaffolds with controlled development of microarchitecture can be useful in bone tissue engineering applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078142PMC
http://dx.doi.org/10.1021/acsabm.9b00207DOI Listing

Publication Analysis

Top Keywords

simvastatin acid
16
development porosity
8
biodegradable scaffolds
8
drug delivery
8
tissue engineering
8
engineering applications
8
tissue formation
8
dual drug
8
pbae porogen
8
plga microspheres
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!