AI Article Synopsis

  • Bone marrow mesenchymal stem cells (MSCs) are valuable in clinical settings but face challenges due to their diverse functions and cellular variability.
  • Research using single-cell RNA sequencing revealed that fatty acid pathways, particularly butyrate, play a key role in influencing MSC behavior and differentiation.
  • While butyrate reduced MSC self-renewal and differentiation, it also enhanced the expression of factors that support hematopoietic stem cell (HSC) niche function, suggesting its potential as a therapeutic tool.

Article Abstract

Bone marrow mesenchymal stem cells (MSCs) are widely used clinically due to their versatile roles in multipotency, immunomodulation, and hematopoietic stem cell (HSC) niche function. However, cellular heterogeneity limits MSCs in the consistency and efficacy of their clinical applications. Metabolism regulates stem cell function and fate decision; however, how metabolites regulate the functional heterogeneity of MSCs remains elusive. Here, using single-cell RNA sequencing, we discovered that fatty acid pathways are involved in the regulation of lineage commitment and functional heterogeneity of MSCs. Functional assays showed that a fatty acid metabolite, butyrate, suppressed the self-renewal, adipogenesis, and osteogenesis differentiation potential of MSCs with increased apoptosis. Conversely, butyrate supplement significantly promoted HSC niche factor expression in MSCs, which suggests that butyrate supplement may provide a therapeutic approach to enhance their HSC niche function. Overall, our work demonstrates that metabolites are essential to regulate the functional heterogeneity of MSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8075002PMC
http://dx.doi.org/10.3389/fcell.2021.653308DOI Listing

Publication Analysis

Top Keywords

functional heterogeneity
16
fatty acid
12
regulate functional
12
hsc niche
12
heterogeneity mscs
12
metabolites regulate
8
mesenchymal stem
8
stem cells
8
stem cell
8
niche function
8

Similar Publications

Advances and applications in single-cell and spatial genomics.

Sci China Life Sci

December 2024

Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.

The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics.

View Article and Find Full Text PDF

Stereotactic radiosurgery (SRS) and radiotherapy (SRT) have gained prominence as both adjuvant and primary treatment options for patients with skull base tumors that are either inoperable or present as residual or recurrent lesions post-surgery. The object of the current study is to evaluate the safety and efficacy of robotic-assisted SRS and SRT across various skull base pathologies. The study was conducted under PRISMA guidelines and involved a comprehensive evaluation of databases, including PubMed, Scopus, Embase, Web-of-Science, and the Cochrane Library.

View Article and Find Full Text PDF

Objective: To explore the clinical characteristics and risk factors for adverse outcomes in patients with Sjögren's Syndrome-associated pulmonary arterial hypertension (SS-PAH).

Methods: A retrospective analysis was conducted on SS-PAH patients diagnosed by right heart catheterization (RHC) between March 2013 and March 2024 across four Chinese medical centers. Patients were categorized into primary SS-PAH (pSS-PAH) and overlap SS-PAH, based on the presence of additional autoimmune diseases.

View Article and Find Full Text PDF

The α-helix is an abundant and functionally important element of protein secondary structure, which has motivated intensive efforts toward chemical strategies to stabilize helical folds. One such method is the incorporation of non-canonical backbone composition through an additional methyl substituent at the Cα atom. Examples of monomers include the achiral 2-aminoisobutyric acid (Aib) with geminal dimethyl substitution and chiral analogues with one methyl and one non-methyl substituent.

View Article and Find Full Text PDF

Two-dimensional infrared (2D IR) spectroscopy is a powerful technique for measuring molecular heterogeneity and dynamics with a high spatiotemporal resolution. The methods can be applied to characterize specific residues of proteins by incorporating frequency-resolved vibrational labels. However, the time scale of dynamics that 2D IR spectroscopy can measure is limited by the vibrational label's excited-state lifetime due to the decay of 2D IR absorption bands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!