Aim: The aim of this study was to compare between equine and human bone blocks in the osteogenic differentiation of cultured human periodontal ligament stem cells (hPDLSCs) at 14 and 21 days of culture, using confocal laser microscopy and scanning electron microscopy.
Materials And Methods: cultures of commercially obtained hPDLSCs were seeded onto equine and human bone blocks. At 14 days and 21 days of culture, confocal laser microscope images were obtained to assess cellular differentiation and adhesion, and scanning electron microscope images were obtained to validate the osteogenic differentiation by showing the morphological characteristics of the new bone cells.
Results: Both equine and human bone blocks showed positive staining for newly formed bone cells through the confocal laser microscope analysis, however, a higher signal intensity was expressed at 21 days of culture. These findings indicate the biocompatibility of hPDLSC with both types of bone blocks, cellular differentiation, and adhesion. Scanning electron microscopy images validated the osteogenic differentiation by showing the common characteristics of bone cells as flattened, polygonal morphology with multiple extending cytoplasmic processes.
Conclusion: Both equine and human bone blocks were able to confirm the osteogenic capability of seeded human PDLSC. There was no significant difference between equine and human bone blocks on the human PDLSC differentiation. Superior osteogenic differentiation of cultured hPDLSCs was evident at 21 days in comparison to 14 days.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8061614 | PMC |
http://dx.doi.org/10.4103/ijabmr.IJABMR_363_20 | DOI Listing |
Commun Biol
January 2025
Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
The osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) is key for bone formation, and its imbalance leads to osteoporosis. Forkhead Box Protein G1 (FOXG1) is associated with osteogenesis, however, the effect of FOXG1 on osteogenesis of BMSCs and ovariectomy (OVX)-induced bone loss is unknown. In our study, FOXG1 expression in BMSCs increases after osteogenic induction.
View Article and Find Full Text PDFAm J Pathol
January 2025
Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-1606; Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095-1606; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095. Electronic address:
Duchenne muscular dystrophy (DMD) is a lethal, muscle-wasting, genetic disease that is greatly amplified by an immune response to the diseased muscles. The mdx mouse model of DMD was used to test whether the pathology can be reduced by treatments with a CTLA4-Ig fusion protein that blocks costimulatory signals required for activation of T-cells. CTLA4-Ig treatments reduced mdx sarcolemma lesions and reduced the numbers of activated T-cells, macrophages and antigen presenting cells in mdx muscle and reduced macrophage invasion into muscle fibers.
View Article and Find Full Text PDFTissue Eng Part C Methods
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.
View Article and Find Full Text PDFJ Bone Joint Surg Am
November 2024
Department of Neurosurgery, Bokwang Hospital, Daegu, Republic of Korea.
Background: Oblique lumbar interbody fusion (OLIF) results in less tissue damage than in other surgeries, but immediate postoperative pain occurs. Notably, facet joint widening occurs in the vertebral body after OLIF. We hypothesized that the application of a facet joint block to the area of widening would relieve facet joint pain.
View Article and Find Full Text PDFJ Bone Joint Surg Am
January 2025
Department of Orthopedics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
Background: In the setting of cervical open-door laminoplasty, the question of whether or not every opened laminar level should be instrumented has not been sufficiently investigated. We postulated that the surgical outcomes of open-door laminoplasty with instrumentation of every second opened level (skip-fixation) might not be inferior to those of laminoplasty with instrumentation of every opened level (all-fixation). The purpose of the present study was to test the noninferiority of laminoplasty with skip-fixation in improving myelopathy at 2 years postoperatively compared with all-fixation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!