Complex concentrated solutions of multiple principal elements are being widely investigated as high- or medium-entropy alloys (HEAs or MEAs), often assuming that these materials have the high configurational entropy of an ideal solution. However, enthalpic interactions among constituent elements are also expected at normal temperatures, resulting in various degrees of local chemical order. Of the local chemical orders that can develop, chemical short-range order (CSRO) is arguably the most difficult to decipher and firm evidence of CSRO in these materials has been missing thus far. Here we discover that, using an appropriate zone axis, micro/nanobeam diffraction, together with atomic-resolution imaging and chemical mapping via transmission electron microscopy, can explicitly reveal CSRO in a face-centred-cubic VCoNi concentrated solution. Our complementary suite of tools provides concrete information about the degree/extent of CSRO, atomic packing configuration and preferential occupancy of neighbouring lattice planes/sites by chemical species. Modelling of the CSRO order parameters and pair correlations over the nearest atomic shells indicates that the CSRO originates from the nearest-neighbour preference towards unlike (V-Co and V-Ni) pairs and avoidance of V-V pairs. Our findings offer a way of identifying CSRO in concentrated solution alloys. We also use atomic strain mapping to demonstrate the dislocation interactions enhanced by the CSROs, clarifying the effects of these CSROs on plasticity mechanisms and mechanical properties upon deformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-021-03428-z | DOI Listing |
Insects
December 2024
Institute of Chemistry, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile.
The poplar moth, (Lepidoptera: Lyonetiidae), is widely distributed across Europe, Asia, and parts of Africa. It was first identified in Chile in 2015 and has since become a significant pest in the agricultural sector. Additionally, economic losses are further aggravated by the presence of pupae in nearby fruit orchards.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA.
We incorporated Espaloma forcefield parameterization into MoSDeF tools for performing molecular dynamics simulations of organic molecules with HOOMD-Blue. We compared equilibrium morphologies predicted for perylene and poly-3-hexylthiophene (P3HT) with the ESP-UA forcefield in the present work against prior work using the OPLS-UA forcefield. We found that, after resolving the chemical ambiguities in molecular topologies, ESP-UA is similar to GAFF.
View Article and Find Full Text PDFACS Nano
January 2025
School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China.
Modularly organizing active micromachines into high-grade metamachines makes a great leap for operating the microscopic world in a biomimetic way. However, modulating the nonreciprocal interactions among different colloidal motors through chemical reactions to achieve the controllable construction of active colloidal metamachines with specific dynamic properties remains challenging. Here, we report the phototactic active colloidal metamachines constructed by shape-directed dynamic self-assembly of chemically driven peanut-shaped TiO colloidal motors and Janus spherical Pt/SiO colloidal motors.
View Article and Find Full Text PDFInorg Chem
January 2025
CNRS, University of Bordeaux, Bordeaux INP, ICMCB UMR CNRS 5026, F-33600 Pessac ,France.
The diaspore-type crystalline structure is historically well-known in mineralogy, but it has also been widely studied for various applications in the field of catalysis, electrocatalysis, and batteries. However, once two anions of similar ionic size but different electronegativity, such as F and O or more precisely OH, are combined, the knowledge of the location of these two anions is of paramount importance to understand the chemical properties in relation with the generation of hydrogen bonds. Coprecipitation and hydrothermal routes were used to prepare hydroxide-fluorides that crystallize all in an orthorhombic structure with four formula units per cell.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
Nowadays, it is challenging to achieve SO-tolerant environmental catalysis for NO reduction because of the thermodynamically favorable transformation of reactive sites to inactive sulfate species in the presence of SO. Herein, we achieve enhanced low-temperature SO-tolerant NO reduction by manipulating the dynamic coordination environment of active sites. Engineered by coordination chemistry, SiO-CeO composite oxides with a short-range ordered Ce-O-Si structure were elaborately constructed on a TiO support.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!