Vision is usually assumed to be sensitive to the light intensity and spectrum but not to its spectral phase. However, experiments performed on retinal proteins in solution showed that the first step of vision consists in an ultrafast photoisomerization that can be coherently controlled by shaping the phase of femtosecond laser pulses, especially in the multiphoton interaction regime. The link between these experiments in solution and the biological process allowing vision was not demonstrated. Here, we measure the electric signals fired from the retina of living mice upon femtosecond multipulse and single-pulse light stimulation. Our results show that the electrophysiological signaling is sensitive to the manipulation of the light excitation on a femtosecond time scale. The mechanism relies on multiple interactions with the light pulses close to the conical intersection, like pump-dump (photoisomerization interruption) and pump-repump (reverse isomerization) processes. This interpretation is supported both experimentally and by dynamics simulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8081367 | PMC |
http://dx.doi.org/10.1126/sciadv.abe1911 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.
A central paradigm of nonequilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales on which nonequilibrium responses are ultimately maintained. Approaches that illuminate these processes in model systems may enable a more general understanding of other heterogeneous nonequilibrium phenomena, and potentially define ultimate speed and energy cost limits for information processing technologies.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China.
In recent years, the fabrication of materials with large nonlinear optical coefficients and the investigation of methods to enhance nonlinear optical performance have been in the spotlight. Herein, the bismuth telluride (BiTe) thin films were prepared by radio-frequency magnetron sputtering and annealed in vacuum at various temperatures. The structural and optical properties were characterized and analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and UV/VIS/NIR spectrophotometry.
View Article and Find Full Text PDFCells
December 2024
Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria.
Laser-induced photothermal therapy using gold nanoparticles (AuNPs) has emerged as a promising approach to cancer therapy. However, optimizing various laser parameters is critical for enhancing the photothermal conversion efficacy of plasmonic nanomaterials. In this regard, the present study investigates the photothermal effects of dodecanethiol-stabilized hydrophobic ultrasmall spherical AuNPs (TEM size 2.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.
View Article and Find Full Text PDFSci Rep
January 2025
INFN-Laboratori Nazionali di Frascati, Via E. Fermi, 54, 00044, Frascati, Italy.
We analytically solve the Landau-Lifshitz equations for the collective magnetization dynamics in a synthetic antiferromagnet (SAF) nanoparticle and uncover a regime of barrier-free switching under a short small-amplitude magnetic field pulse applied perpendicular to the SAF plane. We give examples of specific implementations for forming such low-power and ultra-fast switching pulses. For fully optical, resonant, barrier-free SAF switching we estimate the power per write operation to be pJ, 10-100 times smaller than for conventional quasi-static rotation, which should be attractive for memory applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!