A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Crystal critters: Self-ejection of crystals from heated, superhydrophobic surfaces. | LitMetric

Crystal critters: Self-ejection of crystals from heated, superhydrophobic surfaces.

Sci Adv

Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02141, USA.

Published: April 2021

Mineral or crystal fouling (the accumulation of precipitants on a material and damage associated with the same) is a pervasive problem in water treatment, thermoelectric power production, and numerous industrial processes. Growing efforts have focused on materials engineering strategies (e.g., superhydrophobicity) to prevent fouling. Here, we present a curious phenomenon in which crystals self-eject from heated, nanotextured superhydrophobic materials during evaporation of saline water drops. These crystal structures (crystal critters) have exceedingly minimal contact with the substrate and thus pre-empt crystal fouling. This unusual phenomenon is caused by cooperative effects of crystallization, evaporative flows, and nanoscale effects. The temperature dependence of the critter effect can be predicted using principles of mass conservation, and we demonstrate that self-propulsion can be generated via temperature gradients, which promote asymmetric growth. The insights on confinement-driven evaporative crystallization can be applied for antifouling by self-ejection of mineral foulants, for drop-based fluidic machines, or even for self-propulsion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8081363PMC
http://dx.doi.org/10.1126/sciadv.abe6960DOI Listing

Publication Analysis

Top Keywords

crystal critters
8
crystal fouling
8
crystal
5
critters self-ejection
4
self-ejection crystals
4
crystals heated
4
heated superhydrophobic
4
superhydrophobic surfaces
4
surfaces mineral
4
mineral crystal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!