Bacterium-mimicking sequentially targeted therapeutic nanocomplexes based on O-carboxymethyl chitosan and their cooperative therapy by dual-modality light manipulation.

Carbohydr Polym

Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, PR China. Electronic address:

Published: July 2021

An integrated gene nanovector capable of overcoming complicated physiological barriers in one vector is desirable to circumvent the challenges imposed by the intricate tumor microenvironment. Herein, a nuclear localization signals (NLS)-decorated element and an iRGD-functionalized element based on O-carboxymethyl chitosan were synthesized, mixed, and coated onto PEI/DNA to fabricate bacterium-mimicking sequentially targeted therapeutic nanocomplexes (STNPs) which were internalized through receptor-mediated endocytosis and other pathways and achieved nuclear translocation of DNA. The endo/lysosomal membrane disruption triggered by reactive oxygen species (ROS) after short-time illumination, together with the DNA nuclear translocation, evoked an enhanced gene expression. Alternatively, the excessive ROS from long-time irradiation induced apoptosis in tumor cells, bringing about greater anti-tumor efficacy owing to the integration of gene and photodynamic therapy. Overall, these results demonstrated bacterium-mimicking STNPs could be a potential candidate for tumor treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.118030DOI Listing

Publication Analysis

Top Keywords

bacterium-mimicking sequentially
8
sequentially targeted
8
targeted therapeutic
8
therapeutic nanocomplexes
8
based o-carboxymethyl
8
o-carboxymethyl chitosan
8
nuclear translocation
8
nanocomplexes based
4
chitosan cooperative
4
cooperative therapy
4

Similar Publications

Bacterium-mimicking sequentially targeted therapeutic nanocomplexes based on O-carboxymethyl chitosan and their cooperative therapy by dual-modality light manipulation.

Carbohydr Polym

July 2021

Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, PR China. Electronic address:

An integrated gene nanovector capable of overcoming complicated physiological barriers in one vector is desirable to circumvent the challenges imposed by the intricate tumor microenvironment. Herein, a nuclear localization signals (NLS)-decorated element and an iRGD-functionalized element based on O-carboxymethyl chitosan were synthesized, mixed, and coated onto PEI/DNA to fabricate bacterium-mimicking sequentially targeted therapeutic nanocomplexes (STNPs) which were internalized through receptor-mediated endocytosis and other pathways and achieved nuclear translocation of DNA. The endo/lysosomal membrane disruption triggered by reactive oxygen species (ROS) after short-time illumination, together with the DNA nuclear translocation, evoked an enhanced gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!