Synthesis, characterization, and selective dye adsorption by pH- and ion-sensitive polyelectrolyte galactomannan-based hydrogels.

Carbohydr Polym

Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China. Electronic address:

Published: July 2021

Three novel polyelectrolyte galactomannan hydrogels (PGHs) were fabricated by chemically crosslinking quaternary ammonium galactomannan (QAG) and carboxymethyl galactomannan (CMG), and employed for the removal of Congo Red (CR) and Methylene Blue (MB). Physicochemical characterization revealed that the PGHs are chemically and physically crosslinked. The PGHs are pH- and ion-sensitive, and their physical crosslinking can be destroyed by artificial urine; water swelling capacity (100.6-321.9 g/g dry gel) and artificial urine swelling capacity (35.9-80.5 g/g dry gel). The adsorption of CR and MB was studied and found to be pH-dependent and selective. The maximum adsorption capacities of CR and MB on the QAG and CMG gels are 1441 and 94.52 mg/g, respectively, and their adsorption kinetics and isotherm behavior obey the pseudo-second-order kinetics model and Langmuir isotherm model, respectively. The adsorption mechanism is dominated by electrostatic interactions and hydrogen bonding. Further, the PGHs have excellent salt resistance and are reusable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.118009DOI Listing

Publication Analysis

Top Keywords

ph- ion-sensitive
8
artificial urine
8
swelling capacity
8
g/g dry
8
dry gel
8
adsorption
5
synthesis characterization
4
characterization selective
4
selective dye
4
dye adsorption
4

Similar Publications

The development of ion-sensitive field-effect transistor (ISFET) sensors based on silicon nanowires (SiNW) has recently seen significant progress, due to their many advantages such as compact size, low cost, robustness and real-time portability. However, little work has been done to predict the performance of SiNW-ISFET sensors. The present study focuses on predicting the performance of the silicon nanowire (SiNW)-based ISFET sensor using four machine learning techniques, namely multilayer perceptron (MLP), nonlinear regression (NLR), support vector regression (SVR) and extra tree regression (ETR).

View Article and Find Full Text PDF
Article Synopsis
  • Developing new methods to detect the epithelial-mesenchymal transition (EMT) is important for studying tissue growth and cancer spread, as traditional methods are often slow and ineffective.
  • This study introduces a pH perturbation technique that detects tight junction barrier disruptions during EMT by measuring proton leakage using a specialized pH-responsive semiconductor.
  • The method effectively identifies EMT at significantly lower concentrations of a triggering cytokine compared to conventional techniques and shows promise for real-time monitoring and drug screening in cancer research.
View Article and Find Full Text PDF

Focusing on the ChemFET (chemical field-effect transistor) technology, the development of a multi-microsensor platform for soil analysis is described in this work. Thus, different FET-based microdevices (i.e.

View Article and Find Full Text PDF

The application of ketoconazole (KET) in ocular drug delivery is restricted by its poor aqueous solubility though its broad-spectrum antifungal activity. The aim of this study is to develop an ion-sensitive gel (ISG) of KET to promote its ocular bioavailability in topical application. The solubility of KET in water was increased by complexation with hydroxypropyl-β-cyclodextrin (HPβCD), then KET-HPβCD inclusion complex (KET-IC) was fabricated into an ion-sensitive ISG triggered by sodium alginate (SA).

View Article and Find Full Text PDF

A light-addressable potentiometric sensor-based extracellular calcium dynamic monitoring and imaging platform for cellular calcium channel drug evaluation.

Biosens Bioelectron

January 2025

Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Binjiang Institute of Zhejiang University, Hangzhou, 310053, China. Electronic address:

Disruption and dysregulation of cellular calcium channel function can lead to diseases such as ischemic stroke, heart failure, and arrhythmias. Corresponding calcium channel drugs typically require preliminary efficacy evaluations using in vitro models such as cells and simulated tissues before clinical testing. However, traditional detection and evaluation methods often encounter challenges in long-term continuous monitoring and lack calcium specificity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!