A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrospun orally disintegrating film formulation of telmisartan. | LitMetric

Electrospun orally disintegrating film formulation of telmisartan.

Pharm Dev Technol

Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.

Published: July 2021

Telmisartan (TEL) is an antihypertensive BCS class II drug with low solubility at physiological pH. However, the solubility of TEL increases with the presence of an alkalizer. Electrospinning is one of the most recent techniques for the solubility enhancement studies. In this study, an electrospun orally disintegrating film (ODF) formulation of TEL was developed with L-arginine and polyvinylpyrrolidone K90 (PVP), and its characterization studies were performed. Preformulation studies were performed to investigate possible incompatibilities in the components of formulation with differential scanning calorimetry (DSC) and Fourier transform infrared spectrometer (FT-IR) analyses. ODFs were characterized in terms of drug content and uniformity, mechanical properties, fiber shape and diameter and dissolution profile. Smooth nanofibers without any beads were obtained. The dissolution rate of the TEL significantly increased. The chosen formulation had acceptable mechanical properties with much faster dissolution compared to the commercially available product. Developed ODF and marketed product were compared with a dissolution study in phosphate-buffered solution (pH 7.4). ODF and marketed product both reached 100% release in the 45th minute, and ODF results showed that ODF had much faster release than marketed product. In this study, TEL ODF formulation was successfully produced and characterized.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10837450.2021.1916031DOI Listing

Publication Analysis

Top Keywords

marketed product
12
electrospun orally
8
orally disintegrating
8
disintegrating film
8
odf formulation
8
studies performed
8
mechanical properties
8
odf marketed
8
odf
6
formulation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!