Tumor Suppressor Effect of RBMS3 in Breast Cancer.

Technol Cancer Res Treat

Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.

Published: November 2021

Background: RBMS3 (RNA-binding motif, single-stranded-intervacting protein 3) acts as a tumor-suppressive gene in a number of human cancers, however, its role in breast cancer is not fully understood. This study aimed to investigate the expression and clinicopathological significance of RBMS3 in breast cancer.

Methods: A total of 998 breast cancer tissue samples in The Cancer Genome Atlas (TCGA) database with survival outcomes were divided into high RBMS3 expression and low expression groups using the median as the cutoff. Clinicopathological characteristics and prognosis were compared between the 2 groups.

Results: TCGA showed that RBMS3 mRNA was downregulated in breast cancer tissues, and RBMS3 downregulation was correlated with poor prognosis. Immunohistochemistry staining of 127 paraffin-embedded breast cancer tissues showed that RBMS3 protein was localized in the cytoplasm and nucleus; however, nuclear staining was present in 90.0% of normal breast tissues but only 28.3% of breast cancer tissues. Decreased RBMS3 protein expression was significantly correlated with estrogen receptor (ER)-negative status and death at final follow-up. Patients with lower RBMS3 protein expression had substantially shorter survival than those with higher RBMS3 expression. Univariate and multivariate analysis indicated that the combination of RBMS3 expression and ER status (a variable designated as "cofactor") was an independent prognostic factor in patients with breast cancer (hazard ratio [HR] = 0.420, 95% confidence interval [CI]: 0.223-0.791, = 0.007).

Conclusion: RBMS3 downregulation was correlated with poor prognosis in breast cancer patients, and the combination of RBMS3 expression and ER status was an independent prognostic factor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8107673PMC
http://dx.doi.org/10.1177/15330338211004921DOI Listing

Publication Analysis

Top Keywords

breast cancer
32
rbms3 expression
16
rbms3
13
cancer tissues
12
rbms3 protein
12
breast
10
cancer
9
rbms3 breast
8
expression
8
tissues rbms3
8

Similar Publications

Background: Cognitive dysfunction emerges as a manifestation of reduced estrogen levels following ovariectomy in an individual. However, the conventional use of estrogen replacement therapy could increase the risk of breast cancer and thromboembolism. Icariin is a natural compound that has been reported to be a neuroprotective agent against dementia.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

The TT & WF Chao Center for BRAIN and Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX, USA.

Background: Global epidemiological studies involving over nine million participants have shown a 35% lower incidence of Alzheimer's Disease (AD) in older cancer survivors compared to those without a history of cancer. This inverse relationship, consistent across recent studies with methodological controls, suggests that cancer itself, rather than cancer treatments, may offer protective factors against AD. This insight opens avenues for novel therapeutic strategies targeting early AD by harnessing cancer-associated protective factors.

View Article and Find Full Text PDF

ENPP-1 is a transmembrane enzyme involved in nucleotide metabolism, and its overexpression is associated with various cancers, making it a potential therapeutic target and biomarker for early tumor diagnosis. Current detection methods for ENPP-1 utilize a colorimetric probe, , which has significant limitations in sensitivity. Here, we present probe , the first nucleic acid-based chemiluminescent probe designed for rapid and highly sensitive detection of ENPP-1 activity.

View Article and Find Full Text PDF

Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!