Tauopathies are a class of neurodegenerative diseases characterized by the abnormal phosphorylation and accumulation of the microtubule-associated protein, Tau. These diseases are associated with degeneration and dysfunction of the noradrenergic system, a critical regulator of memory, locomotion, and the fight or flight response. Though Tau pathology accumulates early in noradrenergic neurons, the relationship between noradrenaline signaling and tauopathy pathogenesis remains unclear. The fruit fly, Drosophila melanogaster, is a valuable model organism commonly used to investigate factors that promote Tau-mediated degeneration. Moreover, Drosophila contain the biogenic amine, octopamine, which is the functional homolog to noradrenaline. Using a Drosophila model of tauopathy, we conducted a candidate modifier screen targeting tyramine β hydroxylase (tβh), the enzyme that controls the production of octopamine in the fly, to determine if levels of this enzyme modulate Tau-induced degeneration in the fly eye. We found that genetic reduction of tβh suppresses Tau toxicity, independent of Tau phosphorylation. These findings show that reduction of tβh, a critical enzyme in the octopaminergic pathway, suppresses Tau pathogenicity and establishes an interaction that can be further utilized to determine the relationship between noradrenergic-like signaling and Tau toxicity in Drosophila.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2021.135937DOI Listing

Publication Analysis

Top Keywords

suppresses tau
12
tau toxicity
12
genetic reduction
8
tyramine hydroxylase
8
toxicity drosophila
8
drosophila model
8
model tauopathy
8
reduction tβh
8
tau
7
drosophila
5

Similar Publications

APOE Christchurch enhances a disease-associated microglial response to plaque but suppresses response to tau pathology.

Mol Neurodegener

January 2025

Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA.

Background: Apolipoprotein E ε4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). A recent case report identified a rare variant in APOE, APOE3-R136S (Christchurch), proposed to confer resistance to autosomal dominant Alzheimer's Disease (AD). However, it remains unclear whether and how this variant exerts its protective effects.

View Article and Find Full Text PDF

Nuclear transport protein suppresses Tau neurodegeneration.

Adv Protein Chem Struct Biol

January 2025

Neural Development Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India.

The nuclear pore complex, a large multimeric structure consists of numerous protein components, serves as a crucial gatekeeper for the transport of macromolecules across the nuclear envelope in eukaryotic cells. Dysfunction of the NPC has been implicated in various neurodegenerative diseases, including Alzheimer's disease. In AD, Tau aggregates interact with NPC proteins, known as nucleoporins, leading to disruptions in nuclear transport.

View Article and Find Full Text PDF

Traumatic brain injury is a leading cause of chronic neurologic disability and a risk factor for development of neurodegenerative disease. However, little is known regarding the pathophysiology of human traumatic brain injury, especially in the window after acute injury and the later life development of progressive neurodegenerative disease. Given the proposed mechanisms of toxic protein production and neuroinflammation as possible initiators or contributors to progressive pathology, we examined phosphorylated tau accumulation, microgliosis and astrogliosis using immunostaining in the orbitofrontal cortex, a region often vulnerable across traumatic brain injury exposures, in an age and sex-matched cohort of community traumatic brain injury including both mild and severe cases in midlife.

View Article and Find Full Text PDF

Background: Anabolic-androgenic steroids (AAS) are synthetic derivatives of testosterone. Sustanon, dissolved in peanut oil, is an AAS used by athletes to build muscle mass. This study aims to examine the effects of Sustanon on male reproductive health.

View Article and Find Full Text PDF

ApoE3 R136S binds to Tau and blocks its propagation, suppressing neurodegeneration in mice with Alzheimer's disease.

Neuron

January 2025

Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China; Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen 518055, Guangdong, China. Electronic address:

PSEN1 E280A carrier for the APOE3 Christchurch variant (R136S) is protected against Alzheimer's disease (AD) symptoms with a distinct anatomical pattern of Tau pathology. However, the molecular mechanism accounting for this protective effect remains incompletely understood. Here, we show that the ApoE3 R136S mutant strongly binds to Tau and reduces its uptake into neurons and microglia compared with ApoE3 wild type (WT), diminishing Tau fragmentation by asparagine endopeptidase (AEP), proinflammatory cytokines by Tau pre-formed fibrils (PFFs) or β-amyloid (Aβ), and neurotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!