This paper shows the influence of turbidity (in Nephelometric Turbidity Units - NTU), chemical oxygen demand (COD) and aeration (CO2 supply) on the productivity and growth rate and lipid content of microalgae (a mixed culture predominantly composed of Chlorella vulgaris), using anaerobically digested vinasse as a culture medium. The microalgae can be cultivated in anaerobically digested vinasse, at turbidity and chemical oxygen demand of 690 NTU and 2.5 gCOD L -1, respectively, according to the modified Gompertz model, and removal of turbidity by filtration did not influence the microalgae productivity (≈ 77 mg L1 d1). Furthermore, aeration increased the productivity up to 139 mg L1 d1, with a biomass dry weight of 2.7 g L-1. Finally, a maximum lipid content of 265 mg L -1 was obtained, while a nitrogen removal of 98% was recorded for all conditions. Thus, the combination of anaerobic digestion followed by the use of the digestate for the cultivation of microalgae may be an efficient way to treat large quantities of this residue, in turn yielding large amounts of microalgae biomass, which can be transformed into fertilizer and biofuel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0001-3765202120190084 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!