We consider the uncalibrated vision-based control problem of robotic manipulators in this work. Though lots of approaches have been proposed to solve this problem, they usually require calibration (offline or online) of the camera parameters in the implementation, and the control performance may be largely affected by parameter estimation errors. In this work, we present new fully uncalibrated visual servoing approaches for position control of the 2DOFs planar manipulator with a fixed camera. In the proposed approaches, no camera calibration is required, and numerical optimization algorithms or adaptive laws for parameter estimation are not needed. One benefit of such features is that exponential convergence of the image position errors can be ensured regardless of the camera parameter uncertainties. Generally, existing uncalibrated approaches only can guarantee asymptotical convergence of the position errors. Moreover, different from most existing approaches which assume that the robot motion plane and the image plane are parallel, one of the proposed approaches allows the camera to be installed at a general pose. This also simplifies the controller implementation and improves the system design flexibility. Finally, simulation and experimental results are provided to illustrate the effectiveness of the presented fully uncalibrated visual servoing approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2021.3070598DOI Listing

Publication Analysis

Top Keywords

fully uncalibrated
12
visual servoing
12
2dofs planar
8
fixed camera
8
parameter estimation
8
uncalibrated visual
8
servoing approaches
8
proposed approaches
8
position errors
8
approaches
7

Similar Publications

Filter bank temporally delayed CCA for uncalibrated SSVEP-BCI.

Med Biol Eng Comput

February 2025

National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, Shandong, China.

The uncalibrated brain-computer interface (BCI) system based on steady-state visual evoked potential (SSVEP) can omit the training process and is closer to the practical application. Filter bank canonical correlation analysis (FBCCA), as a classical approach of uncalibrated SSVEP-based BCI, extracts the fundamental and harmonic ingredients through filter bank decomposition. Nevertheless, this method fails to fully leverage the temporal feature of the signal.

View Article and Find Full Text PDF

Background: The significance and necessity of using powerful multivariate curve resolution (MCR) techniques in the study and investigation of chemical systems are clear and obvious. It has long been recognized the importance of using second-order data to extract both quantitative and qualitative information in analytical chemistry through multivariate calibration instead of univariate calibration. Although the calculation of analytical figures of merit (AFOMs) in multivariate calibrations seems to be complicated, in recent years these parameters have been reported for each developed analytical method based on multivariate calibrations.

View Article and Find Full Text PDF

We introduce a high resolution spatially adaptive light source, or a projector, into a neural reflectance field that allows to both calibrate the projector and photo realistic light editing. The projected texture is fully differentiable with respect to all scene parameters, and can be optimized to yield a desired appearance suitable for applications in augmented reality and projection mapping. Our neural field consists of three neural networks, estimating geometry, material, and transmittance.

View Article and Find Full Text PDF

This study proposes a multidimensional uncalibrated technique for tracking and grasping dynamic targets by a robotic arm in the eye-in-hand mode. This method avoids complex and cumbersome calibration processes, enabling machine vision tasks to be adaptively applied in a variety of complex environments, which solved the problem of traditional calibration methods being unstable in complex environments. The specific method used in this study is first, in the eye-in-hand mode, the robotic arm moves along the , and axes in sequence, and images are taken before and after each movement.

View Article and Find Full Text PDF

We construct data-driven solutions to the Hubble tension which are perturbative modifications to the fiducial ΛCDM cosmology, using the Fisher bias formalism. Taking as proof of principle the case of a time-varying electron mass and fine structure constant, and focusing first on Planck CMB data, we demonstrate that a modified recombination can solve the Hubble tension and lower S_{8} to match weak lensing measurements. Once baryonic acoustic oscillation and uncalibrated supernovae data are included, however, it is not possible to fully solve the tension with perturbative modifications to recombination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!