A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unraveling the Charge Transport Mechanism in Mechanochemically Processed Hybrid Perovskite Solar Cell. | LitMetric

The long-term operation of organic-inorganic hybrid perovskite solar cells is hampered by the microscopic strain introduced by the multiple thermal cycles during the synthesis of the material via a solution process route. This setback can be eliminated by a room temperature synthesis scheme. In this work, a mechanochemical synthesis technique at room temperature is employed to process CHNHPbIBr films for fabricating perovskite solar cell devices. The solar cell device has produced a 957 mV , a 16.92 mA/cm short circuit current density, and a 10.5% efficiency. These values are higher than the published values on mechanochemically synthesized CHNHPbI. The charge transport properties of the devices are studied using DC conductivity and AC impedance spectroscopy, which show a multichannel transport mechanism having both ionic and electronic contributions. A much smaller defect density in the mechanochemically synthesized hybrid perovskite material is confirmed. A polarization assisted recombination mechanism is observed to have a dominant effect on the overall charge transport mechanism. However, no obvious grain boundary and intralayer lattice defect related responses are found in the perovskite layer. Interfacial charge transport and recombination are found to show major effects on both the temperature dependent and illumination dependent impedance spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.1c00200DOI Listing

Publication Analysis

Top Keywords

charge transport
16
transport mechanism
12
hybrid perovskite
12
perovskite solar
12
solar cell
12
room temperature
8
mechanochemically synthesized
8
transport
5
perovskite
5
unraveling charge
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!