To combat the ongoing public health threat of antibiotic-resistant infections, a technology that can quickly identify infecting bacterial pathogens and concurrently perform antimicrobial susceptibility testing (AST) in point-of-care settings is needed. Here, we develop a technology for point-of-care AST with a low-magnification solution scattering imaging system and a real-time video-based object scattering intensity detection method. The low magnification (1-2×) optics provides sufficient volume for direct imaging of bacteria in urine samples, avoiding the time-consuming process of culture-based bacterial isolation and enrichment. Scattering intensity from moving bacteria and particles in the sample is obtained by subtracting both spatial and temporal background from a short video. The time profile of scattering intensity is correlated with the bacterial growth rate and bacterial response to antibiotic exposure. Compared to the image-based bacterial tracking and counting method we previously developed, this simple image processing algorithm accommodates a wider range of bacterial concentrations, simplifies sample preparation, and greatly reduces the computational cost of signal processing. Furthermore, development of this simplified processing algorithm eases implementation of multiplexed detection and allows real-time signal readout, which are essential for point-of-care AST applications. To establish the method, 130 clinical urine samples were tested, and the results demonstrated an accuracy of ∼92% within 60-90 min for UTI diagnosis. Rapid AST of 55 positive clinical samples revealed 98% categorical agreement with both the clinical culture results and the on-site parallel AST validation results. This technology provides opportunities for prompt infection diagnosis and accurate antibiotic prescriptions in point-of-care settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152505 | PMC |
http://dx.doi.org/10.1021/acs.analchem.1c00019 | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China. Electronic address:
In this study, the improvement mechanism of yeast proteins (YPs) with the ultrasonic and pH shifting treatment on the emulsion stability was investigated through the solubility, protein structure and interface behavior of YPs. Compared with only pH shifting or ultrasound treatment, the solubility of YPs with the combined treatment of ultrasonic and pH shifting was increased significantly. The soluble protein content of pH-U400 reached 85.
View Article and Find Full Text PDFBioorg Chem
December 2024
Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
In this study, novel 2-styrylquinoline derivatives possessing a planar aromatic system and a flexible side chain with an amino substituent were designed and synthesized as DNA-intercalating antitumor agents. The cytotoxic activity of the synthesized compounds was evaluated against four cancer cell lines including MCF-7 (breast cancer cells), A549 (lung epithelial cancer cells), HCT116 (colon cancer cells) and normal cell line L929 (mouse fibroblast cell line). The results displayed that the anti-cancer activity of the target quinolines is sensitive to the lipophilic nature of the C-6 and C-7 quinoline substituents.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
USC Keck School of Medicine, Los Angeles, CA, USA.
Background: Human Apolipoprotein (APOE) has three isoforms, ε2, ε3, and ε4 among which ε4 (APOE4) confers the highest risk for late-onset Alzheimer's disease (AD). APOE4 is also the most prone to aggregate among APOE isoforms. Current evidence strongly suggests that APOE aggregation leads to neuronal dysfunction and eventually to AD.
View Article and Find Full Text PDFSci Rep
January 2025
College of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130012, China.
Globally, heavy metal (HM) soil pollution is becoming an increasingly serious concern. Heavy metals in soils pose significant environmental and health risks due to their persistence, toxicity, and potential for bioaccumulation. These metals often originate from anthropogenic activities such as industrial emissions, agricultural practices, and improper waste disposal.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
William H. Miller III Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218.
Introducing an experimental technique of time-resolved inelastic neutron scattering (TRINS), we explore the time-dependent effects of resonant pulsed microwaves on the molecular magnet CrFPiv. The octagonal rings of magnetic Cr atoms with antiferromagnetic interactions form a singlet ground state with a weakly split triplet of excitations at 0.8 meV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!