To ascertain the influence of binary ligand systems [1,1-dicyanoethylene-2,2-dithiolate (i-mnt-2) and polyamine {tetraen = tris(2-aminoethyl)amine, tren = diethylene triamine and opda = o-phenylenediamine}] on the coordination modes of the Ni(ii) metal center and resulting supramolecular architectures, a series of nickel(ii) thiolate complexes [Ni(tetraen)(i-mnt)](DMSO) (1), [Ni2(tren)2(i-mnt)2] (2), and [Ni2(i-mnt)2(opda)2]n (3) have been synthesized in high yield in one step in water and structurally characterized by single crystal X-ray crystallography and spectroscopic techniques. X-ray diffraction studies disclose the diverse i-mnt-2 coordination to the Ni+2 center in the presence of active polyamine ligands, forming a slightly distorted octahedral geometry (NiN4S2) in 1, square planar (NiS4) and distorted octahedral geometries (NiN6) in the bimetallic co-crystallized aggregate of cationic [Ni(tren)2]+2 and anionic [Ni(i-mnt)2]-2 in 2, and a one dimensional (1D) polymeric chain along the [100] axis in 3, having consecutive square planar (NiS4) and octahedral (NiN6) coordination kernels. The N-HO, N-HS, N-HN, N-HS, N-HN, and N-HO type hydrogen bonds stabilize the supramolecular assemblies in 1, 2, and 3 respectively imparting interesting graph-set-motifs. The molecular Hirshfeld surface analyses (HS) and 2D fingerprint plots were utilized for decoding all types of non-covalent contacts in the crystal networks. Atomic HS analysis of the Ni+2 centers reveals significant Ni-N metal-ligand interactions compared to Ni-S interactions. We have also studied the unorthodox interactions observed in the solid state structures of 1-3 by QTAIM and NBO analyses. Moreover, all the complexes proved to be highly active water reduction co-catalysts (WRC) in a photo-catalytic hydrogen evolution process involving iridium photosensitizers, wherein 2 and 3 having a square planar arrangement around the nickel center(s) - were found to be the most active ones, achieving 1000 and 1119 turnover numbers (TON), respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt00352f | DOI Listing |
Sensors (Basel)
December 2024
Department of Biomedical Engineering, Army Medical University, The Third Military Medical University, Chongqing 400038, China.
Magnetic induction phase shift is a promising technology for the detection of cerebral hemorrhage, owing to its nonradioactive, noninvasive, and real-time detection properties. To enhance the detection sensitivity and linearity, a zero-flow sensor was proposed. The uniform primary magnetic field and its counteraction were achieved.
View Article and Find Full Text PDFScience
January 2025
Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, China.
One of the primary challenges in commercializing perovskite solar cells (PSCs) is achieving both high power conversion efficiency (PCE) and sufficient stability. We integrate wafer-scale continuous monolayer MoS buffers at the top and bottom of a perovskite layer through a transfer process. These films physically block ion migration of perovskite into carrier transport layers and chemically stabilize the formamidinium lead iodide phase through strong coordination interaction.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
Controlling the rate of electron spin relaxation in paramagnetic molecules is essential for contemporary applications in molecular magnetism and quantum information science. However, the physical mechanisms of spin relaxation remain incompletely understood, and new spectroscopic observables play an important role in evaluating spin dynamics mechanisms and structure-property relationships. Here, we use cryogenic magnetic circular dichroism (MCD) spectroscopy and pulse electron paramagnetic resonance (EPR) in tandem to examine the impact of ligand field (d-d) excited states on spin relaxation rates.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Tianmushan Laboratory, Yuhang District, Hangzhou 311115, China.
The continuous expansion of wireless communication application scenarios demands the active tuning of electromagnetic (EM) metamaterials, which is essential for their flexible adaptation to complex EM environments. However, EM reconfigurable systems based on intricate designs and smart materials often exhibit limited flexibility and incur high manufacturing costs. Inspired by mechanical metastructures capable of switching between multistable configurations under repeated deformation, we propose a planar kirigami frequency selective surface (FSS) that enables mechanical control of its resonant frequency.
View Article and Find Full Text PDFSci Adv
January 2025
Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.
We report the appearance of superconductivity in single-unit-cell NdNiO, exhibiting a transition temperature similar to that of thicker films. In situ synchrotron x-ray scattering performed during growth of the parent phase, NdNiO, shows that the necessary layer-by-layer deposition sequence does not follow the sequence of the formula unit but an alternate order due to the relative stability of the perovskite unit cell. We exploit this insight to grow ultrathin NdNiO heterostructures and conduct in situ studies of topotactic reduction, finding that formation of the square-planar phase occurs rapidly and is highly sensitive to reduction temperature, with small deviations from the optimum condition leading to inhomogeneity and the loss of superconductivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!