Effective SARS-CoV-2 vaccines are urgently needed. Although most vaccine strategies have focused on systemic immunization, here we compared the protective efficacy of 2 adjuvanted subunit vaccines with spike protein S1: an intramuscularly primed/boosted vaccine and an intramuscularly primed/intranasally boosted mucosal vaccine in rhesus macaques. The intramuscular-alum-only vaccine induced robust binding and neutralizing antibody and persistent cellular immunity systemically and mucosally, whereas intranasal boosting with nanoparticles, including IL-15 and TLR agonists, elicited weaker T cell and Ab responses but higher dimeric IgA and IFN-α. Nevertheless, following SARS-CoV-2 challenge, neither group showed detectable subgenomic RNA in upper or lower respiratory tracts versus naive controls, indicating full protection against viral replication. Although mucosal and systemic protective mechanisms may differ, results demonstrate both vaccines can protect against respiratory SARS-CoV-2 exposure. In summary, we have demonstrated that the mucosal vaccine was safe after multiple doses and cleared the input virus more efficiently in the nasal cavity and thus may act as a potent complementary reinforcing boost for conventional systemic vaccines to provide overall better protection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262352PMC
http://dx.doi.org/10.1172/jci.insight.148494DOI Listing

Publication Analysis

Top Keywords

mucosal vaccine
12
vaccine rhesus
8
rhesus macaques
8
vaccine
6
protection sars-cov-2
4
sars-cov-2 infection
4
mucosal
4
infection mucosal
4
macaques effective
4
effective sars-cov-2
4

Similar Publications

Immune thrombocytopenia (ITP) is an autoimmune disorder marked by a low platelet count, leading to symptoms ranging from mild to severe bleeding. It can be triggered by various factors, including idiopathic origins, medications, malignancies, infections, and other autoimmune conditions. Though rare, ITP can also occur postvaccination.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an emergent threat due to the antimicrobial resistance crisis. Bacteriophages (phages) are promising agents for phage therapy approaches against P. aeruginosa.

View Article and Find Full Text PDF

Combined TLR2/TLR4 activation equip non-mucosal dendritic cells to prime Th1 cells with gut tropism.

iScience

December 2024

CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal.

Activated CD4 T cells located at mucosal surfaces orchestrate local effector immune mechanisms. When properly polarized, these cells contribute to block infections at early stages and may be essential to restrain the local growth of mucosal tumors, playing a critical role in host protection. How CD4 T cells simultaneously integrate gut-homing instructions and Th polarization signals transmitted by TLR activated dendritic cells (DCs) is unknown.

View Article and Find Full Text PDF

H and B Blood Antigens Are Essential for In Vitro Replication of GII.2 Human Norovirus.

Open Forum Infect Dis

January 2025

Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan.

Background: Human norovirus (HuNoV) is a major cause of enteric infectious gastroenteritis and is classified into several genotypes based on its capsid protein amino acid sequence and nucleotide sequence of the polymerase gene. Among these, GII.4 is the major genotype worldwide.

View Article and Find Full Text PDF

Porcine deltacoronavirus (PDCoV) is increasingly prevalent in newborn piglets with diarrhea. With the development of research on the virus and the feasibility of PDCoV cross-species transmission, the biosafety and the development of pig industry have been greatly affected. In this study, a PDCoV strain CH/LNFX/2022 was isolated from diarrheal newborn piglets at a farm in China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!