AbstractIntralocus sexual conflict, or sexual antagonism, occurs when alleles have opposing fitness effects in the two sexes. Previous theory suggests that sexual antagonism is a driver of genetic variation by generating balancing selection. However, most of these studies assume that populations are well mixed, neglecting the effects of spatial subdivision. Here, we use mathematical modeling to show that limited dispersal changes evolution at sexually antagonistic autosomal and X-linked loci as a result of inbreeding and sex-specific kin competition. We find that if the sexes disperse at different rates, kin competition within the philopatric sex biases intralocus conflict in favor of the more dispersive sex. Furthermore, kin competition diminishes the strength of balancing selection relative to genetic drift, reducing genetic variation in small subdivided populations. Meanwhile, by decreasing heterozygosity, inbreeding reduces the scope for sexually antagonistic polymorphism due to nonadditive allelic effects, and this occurs to a greater extent on the X chromosome than autosomes. Overall, our results indicate that spatial structure is a relevant factor in predicting where sexually antagonistic alleles might be observed. We suggest that sex-specific dispersal ecology and demography can contribute to interspecific and intragenomic variation in sexual antagonism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/713739 | DOI Listing |
Proc Biol Sci
January 2025
Department of Environmental and Life Sciences, Karlstad University, Karlstad 651 88, Sweden.
Recombination plays a key role in increasing the efficacy of selection. We investigate whether recombination can also play a role in resolving adaptive conflicts at loci coding for traits shared between the sexes. Errors during recombination events resulting in gene duplications may provide a long-term evolutionary advantage if those loci also experience sexually antagonistic (SA) selection since, after duplication, sex-specific expression profiles will be free to evolve, thereby reducing the load on population fitness and resolving the conflict.
View Article and Find Full Text PDFTheriogenology
March 2025
Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193, Barcelona, Spain. Electronic address:
Oocyte-secreted factors (OSFs), such as BMP15 and GDF9, are soluble paracrine factors that drive cumulus cell differentiation and function, sustaining oocyte competence acquisition and embryo development. This study aimed to assess the effect of BMP15 and GDF9 on IVM medium of prepubertal goat oocytes. COCs were in vitro matured in absence (control group) or presence of 100 ng/mL of BMP15, GDF9, or both.
View Article and Find Full Text PDFMol Biol Evol
December 2024
Department of Ecology and Genetics, Animal Ecology, Uppsala University, 75234 Uppsala, Sweden.
When different alleles are favored in different environments, dominance reversal where alternate alleles are dominant in the environment in which they are favored can generate net balancing selection. The sexes represent two distinct genetic environments and sexually antagonistic (SA) selection can maintain genetic variation, especially when the alleles involved show sex-specific dominance. Sexual dimorphism in gene expression is pervasive and has been suggested to result from SA selection.
View Article and Find Full Text PDFJ Evol Biol
December 2024
Department of Biology, Georgetown University, 37th and O Streets NW, Washington DC.
In eutherians, one of the X chromosomes in each cell of the early female embryo is rendered transcriptionally silent through X chromosome inactivation. The choice of which X chromosome to inactivate takes place independently in each cell and is stably inherited through development, leading to a roughly 50:50 ratio of cells in the adult body expressing one or the other X chromosome. However, X chromosome inactivation can be skewed, with certain X chromosomes showing a heritable tendency to avoid inactivation.
View Article and Find Full Text PDFAntimicrob Agents Chemother
December 2024
Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
, a sexually transmitted bacterium, is a significant cause of urethritis in men and various reproductive tract infections in women, including cervicitis, pelvic inflammatory disease, endometritis, and potentially infertility. Treatment has become increasingly challenging due to the emergence of resistance to both first-line (azithromycin) and second-line (moxifloxacin) antibiotics. The need for new treatment options is critical.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!