Our purpose was to study the effect of hyperglycemia on macrophage TBK1-HIF-1α-mediated IL-17/IL-10 signaling and its correlation with coronary atherosclerosis. A total of 135 patients with coronary heart disease (CHD) were divided into a stable CHD (SCHD) group (n = 30) and an acute myocardial infarction (AMI) group (n = 105) [nondiabetes mellitus (non-DM)-AMI, n = 60; DM-AMI, n = 45] from January to September 2020. The SYNTAX score and metabolic and inflammatory markers were quantified and compared. THP-1 cell studies and an animal study of coronary intimal hyperplasia were also carried out. We found that the DM-AMI group showed a higher SYNTAX score than the non-DM-AMI group (P < .05). The DM-AMI group showed the highest expression levels of TANK-binding kinase 1 (TBK1), hypoxia-inducible factor 1α (HIF-1α), and interleukin (IL)-17 and the lowest expression level of IL-10, followed by the non-DM-AMI group and the SCHD group (P < .05). THP-1 cell studies showed that BAY87-2243 (a HIF-1α inhibitor) reversed the increase in IL-17 and decrease in IL-10 expression induced by hyperglycemia. Amlexanox (a TBK1 inhibitor) reversed the increase in HIF-1α expression induced by hyperglycemia. Amlexanox treatment resulted in lower coronary artery intimal hyperplasia and a larger lumen area in a diabetic swine model. We conclude that hyperglycemia might aggravate the complexity of coronary atherosclerosis through activation of TBK1-HIF-1α-mediated IL-17/IL-10 signaling. Thus, TBK1 may be a novel drug therapy target for CHD complicated with DM.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202100086RRDOI Listing

Publication Analysis

Top Keywords

macrophage tbk1-hif-1α-mediated
8
tbk1-hif-1α-mediated il-17/il-10
8
il-17/il-10 signaling
8
coronary atherosclerosis
8
syntax score
8
activation macrophage
4
signaling hyperglycemia
4
hyperglycemia aggravates
4
aggravates complexity
4
coronary
4

Similar Publications

XOR-Derived ROS in Tie2-Lineage Cells Including Endothelial Cells Promotes Aortic Aneurysm Progression in Marfan Syndrome.

Arterioscler Thromb Vasc Biol

January 2025

Department of Cardiovascular Medicine, The University of Tokyo, Bunkyo-ku, Japan. (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.).

Background: Marfan syndrome (MFS) is an inherited disorder caused by mutations in the gene encoding fibrillin-1, a matrix component of extracellular microfibrils. The main cause of morbidity and mortality in MFS is thoracic aortic aneurysm and dissection, but the underlying mechanisms remain undetermined.

Methods: To elucidate the role of endothelial XOR (xanthine oxidoreductase)-derived reactive oxygen species in aortic aneurysm progression, we inhibited in vivo function of XOR either by endothelial cell (EC)-specific disruption of the gene or by systemic administration of an XOR inhibitor febuxostat in MFS mice harboring the missense mutation p.

View Article and Find Full Text PDF

A targeted and synergetic nano-delivery system against infection for promoting wound healing.

Mater Today Bio

April 2025

Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China.

Purpose: infection is the most common pathogen in burn wound infections, causing delayed wound healing and progression to chronic wounds. Therefore, there is an urgent need to develop antimicrobial agents that can promote wound healing for effectively treating infected wounds.

Patients And Methods: Using magnetic stirring and ultrasound to synthesize Apt-pM@UCNPmSiO-Cur-CAZ.

View Article and Find Full Text PDF

Cell therapy is an emerging strategy for precision treatment of scleroderma. This review systematically summarizes the research progress of mesenchymal stem cell (MSC) and chimeric antigen receptor T cell (CAR-T) therapies in scleroderma and discusses the challenges and future directions for development. MSCs possess multiple functions, including immunomodulation, anti-fibrosis, and promotion of vascular regeneration, all of which can improve multiple pathological processes associated with scleroderma.

View Article and Find Full Text PDF

Effects of aged garlic extract on macrophage functions: a short review of experimental evidence (Review).

Biomed Rep

March 2025

Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan.

Macrophages play crucial roles in both the innate and adaptive immune systems, contributing to the removal of pathogens and subsequent immune responses. Conversely, aberrant macrophage functions are associated with the onset and progression of various diseases, highlighting macrophages as potential therapeutic targets. Aged garlic extract (AGE) is derived from garlic that has undergone a maturation process of over 10 months in an ethanol solution and contains a variety of bioactive components which are produced in the aging process.

View Article and Find Full Text PDF

Introduction: Interleukin-10 (IL-10) is a potent immunomodulatory cytokine widely explored as a therapeutic agent for diseases, including myocardial infarction (MI). High-dose IL-10 treatment may not achieve expected outcomes, raising the question of whether IL-10 has dose-dependency, or even uncharted side-effects from overdosing. We hypothesized that IL-10 has dose-dependent effects on macrophage (Mφ) phenotypic transition and cardiac remodeling after MI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!