3D fluorescent mapping of invisible molecular damage after cavitation in hydrogen exposed elastomers.

Soft Matter

SIMM, ESPCI Paris, Université PSL, CNRS, Sorbonne Université, 10 Rue Vauquelin, 75005 Paris, France. and Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.

Published: April 2021

Elastomers saturated with gas at high pressure suffer from cavity nucleation, inflation, and deflation upon rapid or explosive decompression. Although this process often results in undetectable changes in appearance, it causes internal damage, hampers functionality (e.g., permeability), and shortens lifetime. Here, we tag a model poly(ethyl acrylate) elastomer with π-extended anthracene-maleimide adducts that fluoresce upon network chain scission, and map in 3D the internal damage present after a cycle of gas saturation and rapid decompression. Interestingly, we observe that each cavity observable during decompression results in a damaged region, the shape of which reveals a fracture locus of randomly oriented penny-shape cracks (i.e., with a flower-like morphology) that contain crack arrest lines. Thus, cavity growth likely proceeds discontinuously (i.e., non-steadily) through the stable and unstable fracture of numerous 2D crack planes. This non-destructive methodology to visualize in 3D molecular damage in polymer networks is novel and serves to understand how fracture occurs under complex 3D loads, predict mechanical aging of pristine looking elastomers, and holds potential to optimize cavitation-resistance in soft materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1sm00325aDOI Listing

Publication Analysis

Top Keywords

molecular damage
8
internal damage
8
fluorescent mapping
4
mapping invisible
4
invisible molecular
4
damage
4
damage cavitation
4
cavitation hydrogen
4
hydrogen exposed
4
exposed elastomers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!