Anti-tumor treatment based on free radicals is often inefficient in hypoxic tumors, mainly because of the oxygen-dependent generation mechanism of reactive oxygen species (ROS). Herein, we report an NIR laser-controlled nano-system that is capable of generating alkyl radicals in situ in an oxygen-independent approach. Hollow mesoporous Prussian blue nanoparticles (HPB NPs) were developed to co-encapsulate the azo initiator (AIBI) and 1-tetradecanol as the phase change material (PCM, melting point of ∼39 °C), obtaining the AP@HPB NPs. At normal body temperature, the PCM remained in the solid state to prevent the pre-leakage of AIBI. Upon NIR laser irradiation (808 nm) at the tumor site, AP@HPB NPs generated heat upon photothermal conversion, which melted the PCM to release AIBI and decomposed AIBI to produce toxicity free alkyl radicals under both normoxic and hypoxic conditions. The alkyl free radicals efficiently killed tumor cells by causing oxidative stress and damaging DNA. Meanwhile, NIR light-induced hyperthermia cooperated with free radicals to efficiently eradicate tumors. This study therefore provides a promising strategy toward oxygen-independent free radical therapy, especially for the treatment of hypoxic tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1bm00084e | DOI Listing |
Environ Sci Technol
January 2025
Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China.
The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.
View Article and Find Full Text PDFAdv Mater
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
Among direct recycling methods for spent lithium-ion batteries, solid-state regeneration is the route with minimal bottlenecks for industrial application and is highly compatible with the current industrial cathode materials production processes. However, surface structure degradation and interfacial impurities of spent cathodes significantly hinder Li replenishment during restoration. Herein, we propose a unique advanced oxidation strategy that leverages the inherent catalytic activity of spent layered cathode materials to address these challenges.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:
Ofloxacin (OFX), commonly employed in the treatment of infectious diseases, is frequently detected in aquatic environments and poses potential ecological risks. UV/HO oxidation has been recognized as an efficient approach for removing antibiotics. In this study, Cu-doped waste-tire carbon was prepared and used as a UV/HO catalyst for the degradation of OFX.
View Article and Find Full Text PDFBMJ Open
December 2024
Research and Development Center for New Medical Frontiers, Department of Advanced Medicine, Division of Neonatal Intensive Care Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
Objectives: Inhaled nitric oxide (iNO) is a known treatment for pulmonary hypertension (PH) associated with bronchopulmonary dysplasia in preterm infants after 7 days of age (postacute phase). However, a consensus regarding the optimal criteria for initiating iNO therapy in this population in the postacute phase is currently lacking. This study, therefore, aimed to identify the criteria for initiating iNO therapy, alongside the associated clinical and echocardiographic findings, in this population.
View Article and Find Full Text PDFSkelet Muscle
January 2025
Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!