AI Article Synopsis

  • - The study focuses on using MALDI imaging mass spectrometry (IMS) to analyze N-glycan distributions in FFPE tissues, which helps in understanding various diseases better.
  • - New techniques, such as sialic acid chemical derivatization and the use of endoglycosidase F3, are applied to identify isomeric structures and linkages of N-glycans for more specific localization in tissues.
  • - The proposed workflow combines these chemical and enzymatic methods to enhance the characterization of fucosylation isomers in the same tissue sample, providing deeper insights into glycan structure.

Article Abstract

The analysis of N-glycan distributions in formalin-fixed, paraffin-embedded (FFPE) tissues by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is an effective approach for characterization of many disease states. As the workflow has matured and new technology emerged, approaches are needed to more efficiently characterize the isomeric structures of these N-glycans to expand on the specificity of their localization within tissue. Sialic acid chemical derivatization can be used to determine the isomeric linkage (α2,3 or α2,6) of sialic acids attached to N-glycans, while endoglycosidase F3 (Endo F3) can be enzymatically applied to preferentially release α1,6-linked core fucosylated glycans, further describing the linkage of fucose on N-glycans. Here we describe workflows where N-glycans are chemically derivatized to reveal sialic acid isomeric linkages, combined with a dual-enzymatic approach of endoglycosidase F3 and PNGase F to further elucidate fucosylation isomers on the same tissue section.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1241-5_21DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
8
formalin-fixed paraffin-embedded
8
sialic acid
8
optimization multiple
4
multiple glycosidase
4
glycosidase chemical
4
chemical stabilization
4
stabilization strategies
4
strategies n-glycan
4
n-glycan isomer
4

Similar Publications

Insights into proliferative glomerulonephritis with monoclonal immunoglobulin deposits - is it really monoclonal or not?

Curr Opin Nephrol Hypertens

January 2025

Control of the immune response B and lymphoproliferation, CNRS UMR 7276, INSERM UMR 1262, University of Limoges, Centre de référence de l'amylose AL et autres maladies par dépôts d'immunoglobuline monoclonale, Limoges, France; Service de néphrologie et Centre National de référence amylose AL et autres maladies à dépôts d'immunoglobulines monoclonales, Centre Hospitalier Universitaire, Université de Poitiers, Poitiers, France.

Purpose Of Review: Proliferative glomerulonephritis with monoclonal immunoglobulin deposits (PGNMID), is a disease defined by the presence of glomerulonephritis with nonorganized mono-isotypic immunoglobulin (Ig) deposits. This review will discuss the pathogenesis of PGNMID and address novel techniques for detection of monoclonal Ig and pathologic B-cell clones and for distinguishing monoclonal from oligoclonal Ig deposits.

Recent Findings: Because of low detection rate of circulating monoclonal Ig and nephritogenic B-cell clones and emerging reports of PGNMID-IgG in children, it has been recently argued that many PGNMID-IgG3 cases may not be monoclonal lesions.

View Article and Find Full Text PDF

The detection of skeletal remains using human remain detection dogs (HRD) is often reported anecdotally by handlers to be a challenge. Limited studies have been conducted to determine the volatile organic compounds (VOCs) emitted from bones, particularly when there is limited organic matter remaining. This study aimed to determine the VOCs emitted from dry, weathered bones and examine the detection performance of HRD dogs on these bones when used as training aids.

View Article and Find Full Text PDF

The etiology and pathogenesis of Alzheimer's disease (AD) are complex, and currently, no comprehensive treatment measures exist. In this study, we initially utilized ultra-high-performance liquid chromatography with quadrupole orbitrap mass spectrometry (UHPLC-QE-MS) to profile the bioactive constituents of SZLOL present in the bloodstream. Subsequent Y-maze experimental data demonstrated that SZLOL could ameliorate short-term memory deficits in APP/PS1 mice.

View Article and Find Full Text PDF

In this study, 34 deep eutectic solvents (DESs) were successfully prepared for the extraction of proanthocyanidin from Rhodiolae Crenulatae Radix et Rhizomes. The extraction process was optimized using single factor exploration and Box-Behnken design-response surface analysis. The extraction rate was significantly improved when the molar ratio of choline chloride to 1,3-propanediol was 1:3.

View Article and Find Full Text PDF

Lignan Content and Antioxidant Capacity of Eight Sesame Varieties Cultivated in Korea.

Prev Nutr Food Sci

December 2024

Department of Food Science and Biotechnology, BB21 Project Team, Kyungsung University, Busan 48434, Korea.

The objective of this study was to examine the lignan content and antioxidant activity of eight Korean sesame seed varieties. We analyzed the lignan content using two different techniques: (1) liquid chromatography coupled with tandem mass spectrometry, and (2) high-performance liquid chromatography coupled with ultraviolet detection. We identified that in sesame seeds, the sesamolin lignan occurs at the highest concentration (ranging between 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!