The presence of sialic acids is one characteristic of glycosylated therapeutic proteins. The presence of these charged monosaccharides is critical for the immunogenicity properties and structural properties of the proteins. Profiling of the N-glycans and their charge state is a requisite for complete protein characterization. Two analytical methods developed on released N-glycans are described in this chapter, allowing for the determination of the sialoglycosylation with different levels of details. In the first method (AEX-HILIC/FLR), N-glycans are separated based on their charge and the average charge state can be determined from the fluorescence profile. In the second method (AEX-RP-FLR-MS), N-glycans are also separated based on their charge and the sialylation level is determined based on the fluorescence signal. In addition, in this method, the N-glycans are also separated by type and identified with the hyphenated MS. For both methods, an optimized protocol with fast and high-throughput sample preparation and purification is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1241-5_17 | DOI Listing |
Colorectal cancer is the second leading cause of cancer-related deaths worldwide, and its development typically involves complex metabolic reprogramming. By mapping the spatial distributions of metabolites and -glycans in heterogeneous colorectal cancer tissues, we can elucidate cancer-associated metabolic and -glycan changes. Herein, we combine mass spectrometry imaging-based metabolomics and -glycomics to characterize the spatially resolved reprogramming of metabolites and -glycans in colorectal cancer tissues.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2024
Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States.
Fluorescence labeled glycan homologous mixtures were quantified using fluorescence and then used to evaluate ionization performances in electrospray ionization at micro, nano, and femto flow modes. nanoESI produced higher (2+ and 3+) charged ions adducted with sodium and calcium. In comparison, femtoESI was found to favor the generation of [M + H] ions against metal adducts, even with nonvolatile salts up to 1 mM for NaCl and 100 μM for CaCl.
View Article and Find Full Text PDFAnal Chim Acta
November 2024
Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. Electronic address:
Lectin affinity chromatography is one of powerful tools for the study of protein glycosylation. Different lectin proteins can recognize different structures of monosaccharides or oligosaccharide units, allowing for the selective separation of glycopeptides or glycoproteins containing different polysaccharide structures. However, the N-glycans were only partially captured by most of common lectins, reducing the coverage rate of identifying N-glycoconjugates.
View Article and Find Full Text PDFProtein glycosylation is recognized as a Critical Quality Attribute for the biological and therapeutic activity of many recombinant proteins. Therefore, glycosylation should be monitored rigorously to ensure the desired quality, safety, and potency of monoclonal antibodies and other therapeutic glycoproteins. However, glycans are highly heterogeneous structures in proteins, and this poses a challenge for glycoprofile analysis.
View Article and Find Full Text PDFAnal Bioanal Chem
December 2024
Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!