Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in humans. Despite several emerging vaccines, there remains no verifiable therapeutic targeted specifically to the virus. Here we present a highly effective siRNA therapeutic against SARS-CoV-2 infection using a novel lipid nanoparticle delivery system. Multiple small-interfering RNAs (siRNAs) targeting highly conserved regions of the SARS-CoV-2 virus were screened and three candidate siRNAs emerged that effectively inhibit virus by greater than 90% either alone or in combination with one another. We simultaneously developed and screened two novel lipid nanoparticle formulations for the delivery of these candidate siRNA therapeutics to the lungs, an organ that incurs immense damage during SARS-CoV-2 infection. Encapsulation of siRNAs in these LNPs followed by injection demonstrated robust repression of virus in the lungs and a pronounced survival advantage to the treated mice. Our LNP-siRNA approaches are scalable and can be administered upon the first sign of SARS-CoV-2 infection in humans. We suggest that an siRNA-LNP therapeutic approach could prove highly useful in treating COVID-19 disease as an adjunctive therapy to current vaccine strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8077569PMC
http://dx.doi.org/10.1101/2021.04.19.440531DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 infection
16
infection humans
8
novel lipid
8
lipid nanoparticle
8
sars-cov-2
6
sars-cov-2 targeted
4
targeted sirna-nanoparticle
4
sirna-nanoparticle therapy
4
therapy covid-19
4
covid-19 coronavirus
4

Similar Publications

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

This research investigates the moral frames employed by diverse Chinese-speaking "experts" on their Facebook public pages in relation to COVID-19 vaccines, leveraging Moral Foundations Theory for analysis. The analysis highlights that experts predominantly employ moral frames emphasizing care and authority in communicating COVID-19 vaccines. However, the moral frames of care, loyalty, and fairness are more effective in garnering public support.

View Article and Find Full Text PDF

Background: Cognitive function decline is a problem in aging people living with HIV (PLWHIV). COVID-19 infection is associated with neuropsychiatric manifestations that may persist. The aim of our study was to evaluate cognitive function in PLWHIV before and after COVID-19 infection.

View Article and Find Full Text PDF

Human noroviruses (HNoVs) are a leading cause of acute gastroenteritis worldwide, with significant public health implications. In this study, wastewater-based epidemiology (WBE) was used to monitor the circulation and genetic diversity of HNoVs in Rome over an eight-year period (2017-2024). A total of 337 wastewater samples were analyzed using RT-nested PCR and next-generation sequencing (NGS) to identify genogroups GI and GII and their respective genotypes.

View Article and Find Full Text PDF

Second-generation integrase strand transfer inhibitors (INSTIs) are strongly recommended for people living with HIV-1 (PLWH). The emergence of resistance to second-generation INSTIs has been infrequent and has not yet been a major issue in high-income countries. However, the delayed rollouts of these INSTIs in low- to middle-income countries during the COVID-19 pandemic combined with increased transmission of drug-resistant mutants worldwide are leading to an increase in INSTI resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!