Amyotrophic Lateral Sclerosis (ALS) is recognised to be a complex neurodegenerative disease involving both genetic and non-genetic risk factors. The underlying causes and risk factors for the majority of cases remain unknown; however, ever-larger genetic data studies and methodologies promise an enhanced understanding. Recent analyses using published summary statistics from the largest ALS genome-wide association study (GWAS) (20,806 ALS cases and 59,804 healthy controls) identified that schizophrenia (SCZ), cognitive performance (CP) and educational attainment (EA) related traits were genetically correlated with ALS. To provide additional evidence for these correlations, we built single and multi-trait genetic predictors using GWAS summary statistics for ALS and these traits, (SCZ, CP, EA) in an independent Australian cohort (846 ALS cases and 665 healthy controls). We compared methods for generating the risk predictors and found that the combination of traits improved the prediction (Nagelkerke-R) of the case-control logistic regression. The combination of ALS, SCZ, CP, and EA, using the SBayesR predictor method gave the highest prediction (Nagelkerke-R) of 0.027 (P value = 4.6 × 10), with the odds-ratio for estimated disease risk between the highest and lowest deciles of individuals being 3.15 (95% CI 1.96-5.05). These results support the genetic correlation between ALS, SCZ, CP and EA providing a better understanding of the complexity of ALS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9090723PMC
http://dx.doi.org/10.1038/s41431-021-00885-yDOI Listing

Publication Analysis

Top Keywords

als
9
amyotrophic lateral
8
lateral sclerosis
8
cognitive performance
8
performance educational
8
educational attainment
8
risk factors
8
summary statistics
8
als cases
8
healthy controls
8

Similar Publications

Biomolecular condensates are dynamic membraneless compartments that regulate a myriad of cellular functions. A particular type of physiological condensate called stress granules (SGs) has gained increasing interest due to its role in the cellular stress response and various diseases. SGs, composed of several hundred RNA-binding proteins, form transiently in response to stress to protect mRNAs from translation and disassemble when the stress subsides.

View Article and Find Full Text PDF

Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.

View Article and Find Full Text PDF

Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.

View Article and Find Full Text PDF

Accurate diagnosis and monitoring of neurodegenerative diseases require reliable biomarkers. Cerebrospinal fluid (CSF) proteins are promising candidates for reflecting brain pathology; however, their diagnostic utility may be compromised by natural variability between individuals, weakening their association with disease. Here, we measured the levels of 69 pre-selected proteins in cerebrospinal fluid using antibody-based suspension bead array technology in a multi-disease cohort of 499 individuals with neurodegenerative disorders including Alzheimer's disease (AD), behavioral variant frontotemporal dementia, primary progressive aphasias, amyotrophic lateral sclerosis (ALS), corticobasal syndrome, primary supranuclear palsy, along with healthy controls.

View Article and Find Full Text PDF

Mitochondrial function is modulated by its interaction with the endoplasmic reticulum (ER). Recent research indicates that these contacts are disrupted in familial models of amyotrophic lateral sclerosis (ALS). We report here that this impairment in the crosstalk between mitochondria and the ER impedes the use of glucose-derived pyruvate as mitochondrial fuel, causing a shift to fatty acids to sustain energy production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!