Neonatal encephalopathy due to hypoxia-ischemia is associated with adverse neurodevelopmental effects. The involvement of branched chain amino acids (BCAAs) in this is largely unexplored. Transport of BCAAs at the plasma membrane is facilitated by SLC7A5/SLC3A2, which increase with hypoxia. We hypothesized that hypoxia would alter BCAA transport and metabolism in the neonatal brain. We investigated this using an organotypic forebrain slice culture model with, the SLC7A5/SLC3A2 inhibitor, 2-Amino-2-norbornanecarboxylic acid (BCH) under normoxic or hypoxic conditions. We subsequently analysed the metabolome and candidate gene expression. Hypoxia was associated with increased expression of SLC7A5 and SLC3A2 and an increased tissue abundance of BCAAs. Incubation of slices with C-leucine confirmed that this was due to increased cellular uptake. BCH had little effect on metabolite abundance under normoxic or hypoxic conditions. This suggests hypoxia drives increased cellular uptake of BCAAs in the neonatal mouse forebrain, and membrane mediated transport through SLC7A5 and SLC3A2 is not essential for this process. This indicates mechanisms exist to generate the compounds required to maintain essential metabolism in the absence of external nutrient supply. Moreover, excess BCAAs have been associated with developmental delay, providing an unexplored mechanism of hypoxia mediated pathogenesis in the developing forebrain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8079390 | PMC |
http://dx.doi.org/10.1038/s41598-021-88757-9 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Pathophysiology, School of Basic Medical Sciences, The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, State Key Laboratory of Esophageal, Cancer Prevention and Treatment, Provincial Cooperative Innovation Center for Cancer Chemoprevention, China-US (Henan) Hormel Cancer Institute, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
Esophageal squamous cell carcinoma (ESCC) accounts for about 90% of esophageal cancer cases. The lack of effective therapeutic targets makes it difficult to improve the overall survival of patients with ESCC. Reticulon 4 Interacting Protein 1 (RTN4IP1) is a novel mitochondrial oxidoreductase.
View Article and Find Full Text PDFAnim Nutr
December 2024
State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China.
Gln, one of the most abundant amino acids (AA) in the body, performs a diverse range of fundamental physiological functions. However, information about the role of dietary Gln on AA levels, transporters, protein synthesis, and underlying mechanisms in vivo is scarce. The present study aimed to explore the effects of low-crude protein diet inclusion with differential doses of L-Gln on intestinal AA levels, transporters, protein synthesis, and potential mechanisms in weaned piglets.
View Article and Find Full Text PDFPharm Res
November 2024
Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-Honmachi, Chuo-Ku, Kumamoto, 862-0973, Japan.
Purpose: Amino acid transporters are expressed in the brain capillary endothelial cells that form the blood-brain barrier (BBB), and their expression levels change during the neonatal period. This study aimed to investigate the molecular mechanisms regulating amino acid transporter levels in mouse brain capillary endothelial cells.
Methods: Capillaries were isolated from the brains of neonatal and adult mice.
J Biol Chem
October 2024
Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan. Electronic address:
Amino acid transporters play a vital role in cellular homeostasis by maintaining protein synthesis. L-type amino acid transporter 1 (LAT1/SLC7A5/CD98lc) is a major transporter of large neutral amino acids in cancer cells because of its predominant expression. Although amino acid restriction with various amino acid analog treatments is known to induce mitotic defects, the involvement of amino acid transporters in cell division remains unclear.
View Article and Find Full Text PDFMol Pharm
July 2024
School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland.
The transcorneal route is the main entry route for drugs to the intraocular parts, after topical administration. The outer surface, the corneal epithelium (CE), forms the rate-limiting barrier for drug permeability. Information about the role and protein expression of drug and amino acid transporter proteins in the CE is sparse and lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!