The magneto-transport, magnetization and theoretical electronic-structure have been investigated on type-II Weyl semimetallic MoTeP. The ferromagnetic ordering is observed in the studied sample and it has been shown that the observed magnetic ordering is due to the defect states. It has also been demonstrated that the presence of ferromagnetic ordering in effect suppresses the magnetoresistance (MR) significantly. Interestingly, a change-over from positive to negative MR is observed at higher temperature which has been attributed to the dominance of spin scattering suppression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8079386 | PMC |
http://dx.doi.org/10.1038/s41598-021-88669-8 | DOI Listing |
Inorg Chem
December 2024
Felix Bloch Institute for Solid-State Physics, Leipzig University, Linnestrasse 5, 04103 Leipzig, Germany.
Two new dimorphic spin-1/2 quantum magnets, α- and β-CuO(VO)Cl, were synthesized via a chemical vapor transport method that emulates mineral formation in volcanic fumaroles. α-CuO(VO)Cl () is a pure vanadate analogue of the coparsite mineral characterized by [OCu] 1 single rods, whereas β-CuO(VO)Cl () adopts a new structure type with the [OCu] 2 layered topology. The thermal expansions of both and studied by high-temperature single-crystal X-ray diffraction are reported.
View Article and Find Full Text PDFNature
December 2024
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Controlling the functional properties of quantum materials with light has emerged as a frontier of condensed-matter physics, leading to the discovery of various light-induced phases of matter, such as superconductivity, ferroelectricity, magnetism and charge density waves. However, in most cases, the photoinduced phases return to equilibrium on ultrafast timescales after the light is turned off, limiting their practical applications. Here we use intense terahertz pulses to induce a metastable magnetization with a remarkably long lifetime of more than 2.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.
Investigating material properties is essential to assessing their application potential. While computational methods allow for a fast prediction of the material structure and properties, experimental validation is essential to determining the ultimate material potential. Herein, we report the synthesis and experimental magnetic properties of three previously reported Kagome compounds in the Li-Fe-Ge system.
View Article and Find Full Text PDFPhys Rev E
November 2024
Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany.
The Griffiths phase in systems with quenched disorder occurs below the ordering transition of the pure system down to the ordering transition of the actual disordered system. While it does not exhibit long-range order, large fluctuations in the disorder degrees of freedom result in exponentially rare, long-range ordered states and hence the occurrence of broad distributions in response functions. Inside the Griffiths phase of the two-dimensional bond-diluted Ising model the distribution of the magnetic susceptibility is expected to have such a broad, exponential tail.
View Article and Find Full Text PDFMolecules
November 2024
Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Ibaraki, Japan.
ABO perovskite materials with small cations at the A site, especially with ordered cation arrangements, have attracted a lot of interest because they show unusual physical properties and deviations from general perovskite tendencies. In this work, A-site-ordered quadruple perovskites, RMnNiMnO with R = Nd, Sm, Gd, and Dy, were synthesized by a high-pressure, high-temperature method at about 6 GPa. Annealing at about 1500 K produced samples with additional (partial) B-site ordering of Ni and Mn cations, crystallizing in space group -3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!