In vitro cultures of primary cortical neurons are widely used to investigate neuronal function. However, it has yet to be fully investigated whether there are significant differences in development and function between cultured rodent and primate cortical neurons, and whether these differences influence the utilization of cultured cortical neurons to model pathological conditions. Using in vitro culture techniques combined with immunofluorescence and electrophysiological methods, our study found that the development and maturation of primary cerebral cortical neurons from cynomolgus monkeys were slower than those from mice. We used a microelectrode array technique to compare the electrophysiological differences in cortical neurons, and found that primary cortical neurons from the mouse brain began to show electrical activity earlier than those from the cynomolgus monkey. Although cultured monkey cortical neurons developed slowly in vitro, they exhibited typical pathological features-revealed by immunofluorescent staining-when infected with adeno-associated viral vectors expressing mutant huntingtin (HTT), the Huntington's disease protein. A quantitative analysis of the cultured monkey cortical neurons also confirmed that mutant HTT significantly reduced the length of neurites. Therefore, compared with the primary cortical neurons of mice, cultured monkey cortical neurons have longer developmental and survival times and greater sustained physiological activity, such as electrophysiological activity. Our findings also suggest that primary cynomolgus monkey neurons cultured in vitro can simulate a cell model of human neurodegenerative disease, and may be useful for investigating time-dependent neuronal death as well as treatment via neuronal regeneration. All mouse experiments and protocols were approved by the Animal Care and Use Committee of Jinan University of China (IACUC Approval No. 20200512-04) on May 12, 2020. All monkey experiments were approved by the IACUC protocol (IACUC Approval No. LDACU 20190820-01) on August 23, 2019 for animal management and use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374592 | PMC |
http://dx.doi.org/10.4103/1673-5374.313056 | DOI Listing |
Chaos
January 2025
Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
Generally, epilepsy is considered as abnormally enhanced neuronal excitability and synchronization. So far, previous studies on the synchronization of epileptic brain networks mainly focused on the synchronization strength, but the synchronization stability has not yet been explored as deserved. In this paper, we propose a novel idea to construct a hypergraph brain network (HGBN) based on phase synchronization.
View Article and Find Full Text PDFAging Cell
January 2025
Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK.
Healthy brain aging involves changes in both brain structure and function, including alterations in cellular composition and microstructure across brain regions. Unlike diffusion-weighted MRI (dMRI), diffusion-weighted MR spectroscopy (dMRS) can assess cell-type specific microstructural changes, providing indirect information on both cell composition and microstructure through the quantification and interpretation of metabolites' diffusion properties. This work investigates age-related changes in the higher-order diffusion properties of total N-Acetyl-aspartate (neuronal biomarker), total choline (glial biomarker), and total creatine (both neuronal and glial biomarker) beyond the classical apparent diffusion coefficient in cerebral and cerebellar gray matter of healthy human brain.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
Objectives: Endoplasmic reticulum (ER) stress-induced protein homeostasis perturbation is a core pathological element in the pathogenesis of neurodegenerative diseases. This study aims to clarify the unique role played by C/EBP homologous protein (CHOP) as a biomarker of the unfolded protein response (UPR) in the etiology of chronic pain and related cognitive impairments following chronic constrictive nerve injury (CCI).
Methods: The memory capability following CCI was assessed utilizing the Morris water maze (MWM) and fear conditioning test (FCT).
F1000Res
January 2025
Faculty of Teaching and Education Sciences, Islamic University of Malang, Malang, East Java, Indonesia.
Background: Neurodegeneration due to neurotoxicity is one of the phenomena in temporal lobe epilepsy. Experimentally, hippocampal excitotoxicity process can occur due to kainic acid exposure, especially in the CA3 area. Neuronal death, astrocyte reactivity and increased calcium also occur in hippocampal excitotoxicity, but few studies have investigated immediate effect after kainic acid exposure.
View Article and Find Full Text PDFNarra J
December 2024
Department of Nutrition, Faculty of Medicine Science, Universitas Brawijaya, Malang, Indonesia.
Velvet bean is a native Indonesian legume containing L-dopa, yet it remains underutilized. The aim of this study was to analyze the effects of different types of tempe (soybean, velvet bean, and their combination) on cognitive function, brain histology, dopamine levels, and serum β-amyloid in rats, as well as to identify the parameters most influencing cognitive function, including brain mass and volume, hippocampal neuron count, and dopamine and β-amyloid levels. An experimental study was conducted using a completely randomized design with one factor: the protein source of diet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!