Multiplex Ventilation: Solutions for Four Main Safety Problems.

Respir Care

Cleveland Clinic, Cleveland, Ohio. Mr Branson is affiliated with the University of Cincinnati, Cincinnati, Ohio and is Editor-in-Chief of Respiratory Care.

Published: July 2021

Background: The COVID-19 pandemic has led to an increased demand for mechanical ventilators and concerns of a ventilator shortage. Several groups have advocated for 1 ventilator to ventilate 2 or more patients in the event of such a shortage. However, differences in patient lung mechanics could make sharing a ventilator detrimental to both patients. Our previous study indicated failure to ventilate in 67% of simulations. The safety problems that must be solved include individual control of tidal volume (V), individual measurement of V, individualization of PEEP settings, and individual PEEP measurement. The purpose of this study was to evaluate potential solutions developed at our institution.

Methods: Two separate lung simulators were ventilated with a modified multiplex circuit using pressure control ventilation. Parameters of the lung models used for simulations (resistance and compliance) were evidence-based from published studies. Individual circuit-modification devices were first evaluated for accuracy. Devices were an adjustable flow diverter valve, a prototype dual volume display, a PEEP valve, and a disposable PEEP display. Then the full modified multiplex circuit was assessed by ventilating 6 pairs of simulated patients with different lung models and attempting to equalize ventilation. Ventilation was considered equalized when V and end-expiratory lung volume were within 10% for each simulation.

Results: The adjustable flow diverter valve allowed volume adjustment to 1 patient without affecting the other. The average error of the dual volume display was -17%. The PEEP valves individualized PEEP, but the PEEP gauge error ranged from 17% to 41%. Using the multiplex circuit, ventilation was equalized regardless of differences in resistance or compliance, reversing the "failure modes" of our previous study.

Conclusions: The results of this simulation-based study indicate that devices for individual control and display of V and PEEP are effective in extending the usability and potential patient safety of multiplex ventilation.

Download full-text PDF

Source
http://dx.doi.org/10.4187/respcare.08749DOI Listing

Publication Analysis

Top Keywords

multiplex circuit
12
multiplex ventilation
8
safety problems
8
individual control
8
peep
8
modified multiplex
8
lung models
8
resistance compliance
8
adjustable flow
8
flow diverter
8

Similar Publications

A cross-species inducible system for enhanced protein expression and multiplexed metabolic pathway fine-tuning in bacteria.

Nucleic Acids Res

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.

Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.

View Article and Find Full Text PDF

Toward Large-Scale Photonic Chips Using Low-Anisotropy Thin-Film Lithium-Tantalate.

Adv Sci (Weinh)

January 2025

College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.

Photonic manipulation of large-capacity data with the advantages of high speed and low power consumption is a promising solution for explosive growth demands in the era of post-Moore. A well-developed lithium-niobate-on-insulator (LNOI) platform has been widely explored for high-performance electro-optic (EO) modulators to bridge electrical and optical signals. However, the photonic waveguides on the x-cut LNOI platform suffer serious polarization-mode conversion/coupling issues because of strong birefringence, making it hard to realize large-scale integration.

View Article and Find Full Text PDF

Sepsis is a global health challenge, characterized by a dysregulated immune response, leading to organ dysfunction and death. Despite advances in medical care, sepsis continues to claim a significant toll on human lives, with mortality rates from 10-25% for sepsis and 30-50% for septic shock, making it a leading cause of death worldwide. Current diagnostic methods rely on clinical signs, laboratory parameters, or microbial cultures and suffer from delays and inaccuracies.

View Article and Find Full Text PDF

Boasting superior flexibility in beam manipulation and a simpler framework than traditional phased arrays, terahertz metasurface-based phased arrays show great promise for 5G-A/6G communication networks. Compared with the reflective reconfigurable intelligent surface (reflective RIS), the transmissive RIS (TRIS) offers more feasibility for transceiver multiplexing systems to meet the growing demand for high-performance beam tracking in terahertz communication and radar systems. However, the terahertz TRIS encounters greater challenges in phase shift, beam efficiency, and complex circuitry.

View Article and Find Full Text PDF

Sensors are indispensable tools of modern life that are ubiquitously used in diverse settings ranging from smartphones and autonomous vehicles to the healthcare industry and space technology. By interfacing multiple sensors that collectively interact with the signal to be measured, one can go beyond the signal-to-noise ratios (SNR) attainable by the individual constituting elements. Such techniques have also been implemented in the quantum regime, where a linear increase in the SNR has been achieved via using entangled states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!