Vascularization is currently considered the biggest challenge in bone tissue engineering due to necrosis in the center of large scaffolds. We established a new expendable vascular bundle model to vascularize a three-dimensional printed channeled scaffold with and without bone morphogenetic protein-2 (BMP-2) for improved healing of large segmental bone defects. Bone formation and angiogenesis in an 8 mm critical-sized bone defect in the rat femur were significantly promoted by inserting a bundle consisting of the superficial epigastric artery and vein into the central channel of a large porous polycaprolactone scaffold. Vessels were observed sprouting from the vascular bundle inserted in the central tunnel. Although the regenerated bone volume in the group receiving the scaffold and vascular bundle was similar to that of the healthy femur, the rate of union of the group was not satisfactory (25% at 8 weeks). BMP-2 delivery was found to promote not only bone formation but also angiogenesis in the critical-sized bone defects. Both insertion of the vascular bundle alone and BMP-2 loading alone induced comparable levels of angiogenesis and when used in combination, significantly greater vascular volume was observed. These findings suggest a promising new modality of treatment in large bone defects. Level of Evidence: Therapeutic level I. Impact statement Vascularization is currently the main challenge in bone tissue engineering. The combination of a vascular bundle and an osteoinductive three-dimensional printed graft significantly improved and accelerated bone regeneration and angiogenesis in critical-sized large bone defects, suggesting a promising new modality of treatment in large bone defects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742289 | PMC |
http://dx.doi.org/10.1089/ten.TEA.2021.0049 | DOI Listing |
Br J Nurs
January 2025
Postgraduate Program in Nursing, Nursing Department, Health Sciences Centre, Universidade Federal de Santa Catarina, Florianopolis, Brazil.
Highlights: PIVCs often cause pain, irritation, or infection. Regular and careful catheter checks can decrease complications and improve patient outcomes. Implementation of the I-DECIDED® tool led to fewer idle catheters and complications.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Laboratory of Cell Biosystems, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria.
This study presents a comprehensive phyto- and histochemical analysis of three species: L., the Balkan endemic Guss., and the Bulgarian endemic Delip.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
Celery () can be considered as a model plant for studying pectin-enriched primary cell walls. In addition to parenchyma cells with xyloglucan-deficient walls, celery petioles contain collenchyma, a mechanical tissue with thickened cell walls of similar composition. This study presents a comprehensive analysis of these tissues at both early and late developmental stages, integrating data on polysaccharide yield, composition, localization, and transcriptome analysis.
View Article and Find Full Text PDFDent J (Basel)
December 2024
Department of Cariology, Endodontics and Oral Pathology, School of Dental Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Str. Motilor 33, 400001 Cluj-Napoca, Romania.
: Dental pulp and its neuro-vascular bundle (NVB) are among the least studied dental tissues. This study identified the best method for evaluating ischemic risks in the dental pulp and NVB of healthy lower premolars under orthodontic forces and in intact periodontium. : Nine 3D models of the second lower premolar were reconstructed based on the CBCT scans from nine patients.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan.
Anthropogenic activities such as industrial pollution of water bodies possess threat to floras leading to extinction and endangerment. This study investigates the impact of industrial pollution on vegetation along River Chenab and its associated drains. Rivers and channels transporting industrial effluents have been determined to be significantly contaminated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!