The CuO-ZnO-Carbon (CZC) nanocomposites (NCs) were synthesized via a green method at 300 and 400 °C calcinated temperatures, using waste marigold (Tagetes spp.) flower petal extract as a reducing agent and carbon source. A novel green strategy for the synthesis of highly effective CZC NCs was developed which showed better adsorption of toxic Cr(VI) and Congo red (CR) dye compared to unsupported carbon NCs. In this strategy, fine powder of petals as carbon source were passed with the flower liquid extract during the filtration process, which supported the metal oxides nanorods(NRs)/nanoparticles(NPs) on the surface. Furthermore, the surface of the synthesized NCs was modified by Cetyl Trimethyl Ammonium Bromide (CTAB) cationic surfactant to increase surface functionality, surface area, and positive charge density of NCs. Additionally, the adsorption performance of Cr(VI) and CR dye improved from acidic pH to neutral pH after surfactant modification of NCs compared to unmodified NCs. The characterization techniques such as Powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) surface area analysis, Point of zero charge (pHpzc), Field Emission Scanning Electron Microscopy (FE-SEM), Transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were performed to examine physio-chemical properties of NCs and CTAB modified NCs. The FTIR and BET analysis confirmed that CTAB modified NCs showed excellent functionality and more than 49% and ~67% greater surface area than CZC-300 and CZC-400, respectively, which prepared at 300 and 400 °C temperature. XRD analysis confirmed that NCs were highly crystalline and no phase change after surfactant modification. The FE-SEM and TEM analysis confirmed the pentagonal NRs and spherical NPs of ZnO and CuO, respectively, were formed on the carbon surface. After CTAB modification, no change in the surface morphology of NCs was observed. Thus, comparative study of NCs and CTAB modified NCs was done for Cr(VI) and CR dye adsorption by varying batch conditions, such as initial pH, contact time, temperature, and initial concentration of Cr(VI)/CR dye. The equilibrium time and concentration data were fitted with non-linear forms of kinetic and isotherm models, respectively. CTAB modified CZC-300 NCs showed excellent adsorption capacity for both pollutants up to pH 6 compared to CZC-300 and CZC-400 NCs. Additionally, the maximum adsorption capacity of CTAB modified NCs for Cr(VI) and CR dye were 201.56 and 331.36 mg/g, respectively, at pH 2 and 30 °C and increased with increasing temperature. The effect of co-existing anions on adsorption capacity of both NCs for Cr(VI) and CR dye adsorption was investigated. The regeneration and reusability experiments of both NCs were also performed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.112615 | DOI Listing |
Environ Monit Assess
January 2025
Department of Civil and Environmental Engineering, Babol Noshirvani University of Technology, Babol, Iran.
Water contamination by polycyclic aromatic hydrocarbons (PAHs), particularly naphthalene, is a serious environmental concern due to its persistence, bioaccumulation, and toxicity. This study explores the adsorption behavior of naphthalene using organobentonite (OBt), synthesized by intercalating cetyltrimethylammonium bromide (CTAB) into sodium bentonite (SBt) with varying cation exchange capacities (CECs). The effectiveness of OBt in naphthalene adsorption was evaluated by analyzing key parameters, including CEC, contaminant concentration, and contact time.
View Article and Find Full Text PDFIran J Biotechnol
July 2024
Department of plant production and genetics, School of Agriculture, Shiraz University, Shiraz, Iran.
Background: Triticale and tritipyrum as a new artificial cereal were investigated as potential stress-resistant alternatives within the Triticeae tribe due to their notable adaptability to environmental stresses.
Objectives: The first purpose of this study was to determine the genetic variation of 14 genotypes on physiological traits in arid and semi-arid climate of Yazd province on primary trans chromosomal tritipyrum (PTCT) lines, promising triticale lines, and Iranian and Afghan bread wheat cultivars, and the second purpose was to investigate the genetic diversity and classification of genotypes using start codon targeted (SCoT) markers.
Materials And Methods: The photosynthesis pigments, proline, and catalase enzyme activity of 14 genotypes were determined.
J Xenobiot
December 2024
Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa.
The direct discharge of cationic surfactants into environmental matrices has exponentially increased due to their wide application in many products. These compounds and their degraded products disrupt microbial dynamics, hinder plant survival, and affect human health. Therefore, there is an urgent need to develop electroanalytical assessment techniques for their identification, determination, and monitoring.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil. Electronic address:
In this study, kapok fiber (KF) a hollow and hydrophobic fiber, was modified with cetyltrimethylammonium bromide (CTAB) or cetylpyridinium chloride (CPC), rendering adsorbed amount of ∼0.75 × 10 mol/g. Small-angle X-ray scattering (SAXS) measurements of dry KF/CTAB and KF/CPC evidenced a periodic distance of ∼2.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
This study introduces the synthesis and characterization of advanced silica core-shell nanostructures, with an emphasis on the innovative Si-ACS (Silica Acorn Core-Shell) design and its modified counterparts. Employing the classic Stöber method, SiCore particles were first produced, followed by the creation of the acorn-like Si-ACS structures. A key aspect of this research is the exploration of the effects of CTAB and TEOS concentrations on the morphology and properties of the silica shells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!