The effect of vegetation barriers at reducing the transmission of Salmonella and Escherichia coli from animal operations to fresh produce.

Int J Food Microbiol

Department of Population Health & Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA. Electronic address:

Published: June 2021

Due to the recent outbreaks of Salmonella and Escherichia coli in fresh produce in the United States, the transfer of foodborne pathogens between animal feeding operations and fresh produce continues to be a considerable risk. The purpose of this study was to determine if the establishment of a vegetation barrier (VB) on small-scale sustainable farms could prevent the transmission of Salmonella and E. coli to nearby fresh produce fields. A 5-layer VB (31 × 49 m) was constructed between a dairy farm, a poultry farm, and a nearby produce field. Fresh produce (i.e., romaine lettuce and tomato), animal feces, and environmental (i.e., air, soil, and barrier) samples were collected for 15 months from 2018 to 2019. Four replicates of soil and fresh produce samples were taken from three plots located 10 m, 61 m, and 122 m away from the respective animal locations and processed for Salmonella and E. coli. Air and vegetative strip samples were sampled at 15-day intervals. Multiple colonies were processed from each positive sample, and a total of 143 positive Salmonella (n = 15) and E. coli (n = 128) isolates were retrieved from the soil, produce, air, and fecal samples. Interestingly, 18.2% of the Salmonella and E. coli isolates (n = 26) were recovered from fresh produce (n = 9) samples. Surprisingly, Salmonella isolates (n = 9) were only found in fecal (n = 3) samples collected from the dairy pasture. Data analysis suggests that the VB is an effective tool at reducing the transmission of E. coli and Salmonella from animal farms to fresh produce fields. However, based on phenotypic and genotypic testing, it is clear that fecal samples from animal farms are not the only source of pathogen contamination. This indicates that the environment (e.g., soil and wind), as well as the initial setup of the farm (e.g., proximity to service roads and produce plot placement), can contribute to the contamination of fresh produce. Our study recommends the need for more effective bioremediation and prevention control measures to use in conjunction with VBs to reduce pathogen transmission.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijfoodmicro.2021.109196DOI Listing

Publication Analysis

Top Keywords

fresh produce
36
produce
12
salmonella coli
12
fresh
9
reducing transmission
8
salmonella
8
transmission salmonella
8
salmonella escherichia
8
escherichia coli
8
operations fresh
8

Similar Publications

The conversion of water hyacinth into biochar offers a sustainable solution to mitigate its proliferation and enhances its potential as a soil amendment for agriculture. This study examined the physicochemical properties of water hyacinth biochar (WHBC) and its impact on soil fertility. Water hyacinth (Eichhornia crassipes) was pyrolyzed at 300 °C for 40 minute with restricted airflow (2-3 m/s), producing biochar with desirable properties and a yield of 44.

View Article and Find Full Text PDF

In this study, the extract of leaf and flower of was obtained using an ultrasonic-assisted extraction method. The extraction yield and the content of phenolic, flavonoid, and flavonol compounds in the flower extract were higher (13.93%, 74.

View Article and Find Full Text PDF

Improved Functionality, Quality, and Shelf Life of -Type Camel Sausage Fortified with Spirulina as a Natural Ingredient.

Foods

December 2024

Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain.

The objective of the present work was to examine the effect of incorporating spirulina powder (SP) in -type sausages made exclusively with camel meat, as well as to evaluate its physicochemical, microbiological, and sensory quality attributes and its prebiotic potential. The final purpose was to offer an innovative meat product to increase camel meat consumption. Several innovative fresh sausage formulations were developed using SP (00, 100, 250, and 500 mg/kg) and stored under vacuum conditions with refrigeration at 1 ± 1 °C for 35 days.

View Article and Find Full Text PDF

Comparative Analysis of Biochemical Parameters, Thermal Behavior, Rheological Features, and Gelling Characteristics of Thai Ligor Hybrid Chicken and Broiler Meats.

Foods

December 2024

Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand.

Genetic differences typically cause differences in the structure and function of proteins in meat. The objective of this research was to examine the biochemical characteristics and functional behavior of proteins in fresh composite meat from Thai Ligor hybrid chicken (LC) and commercial broiler chicken (BC). The composite meat samples, which comprise minced breast and thigh without skin from 20 chicken carcasses in a 1:1 (/) ratio, were randomly selected for analysis using the completely randomized design (CRD).

View Article and Find Full Text PDF

Artichoke ( L.) is an herbaceous perennial plant from the Mediterranean Basin, cultivated as a poly-annual crop in different countries. Artichoke produces a considerable amount of waste at the end of the harvesting season in the field (5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!