The highly efficient bioelectrodes based on single layer graphene (SLG) functionalized with pyrene self-assembled monolayer and novel cytochromec(cytc)peptide linker variants were rationally designed to optimize the direct electron transfer (DET) between SLG and the heme group of cyt. Through a combination of photoelectrochemical and quantum mechanical (QM/MM) approaches we show that the specific amino acid sequence of a short peptide genetically inserted between the cytcholoprotein and thesurface anchoring C-terminal His-tag plays a crucial role in ensuring the optimal orientation and distance of the heme group with respect to the SLG surface. Consequently, efficient DET occurring between graphene and cyt c leads to a 20-fold enhancement of the cathodic photocurrent output compared to the previously reported devices of a similar type. The QM/MM modeling implies that a perpendicular or parallel orientation of the heme group with respect to the SLG surface is detrimental to DET, whereas the tilted orientation favors the cathodic photocurrent generation. Our work confirms the possibility of fine-tuning the electronic communication within complex bio-organic nanoarchitectures and interfaces due to optimization of the tilt angle of the heme group, its distance from the SLG surface and optimal HOMO/LUMO levels of the interacting redox centers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2021.107818DOI Listing

Publication Analysis

Top Keywords

heme group
16
slg surface
12
direct electron
8
electron transfer
8
group respect
8
respect slg
8
cathodic photocurrent
8
heme
5
slg
5
enhancement direct
4

Similar Publications

Haemolysis occurring during cardiac surgery with cardiopulmonary bypass (CPB) is assumed to be a risk factor for postoperative acute kidney injury (AKI). Plasma alpha-1 microglobulin (A1M) may have a protective role as haem scavenger. The aim of this study was to evaluate the association between AKI and the degree of haemolysis and the course of A1M concentrations during cardiac surgery, respectively.

View Article and Find Full Text PDF

Resynthesis of Damaged Fe-S Cluster Proteins Protects Against Oxidative Stress in the Absence of Mn-Superoxide Dismutase.

J Fungi (Basel)

November 2024

Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.

The importance of manganese superoxide dismutase (Mn-SOD), an evolutionarily ancient metalloenzyme that maintains the integrity and function of mitochondria, was studied in oxidative stress-treated cultures. Deletion of the Mn-SOD gene () increased both the menadione sodium bisulfite (MSB)-elicited oxidative stress and the deferiprone (DFP)-induced iron limitation stress sensitivity of the strain. Moreover, DFP treatment enhanced the MSB sensitivity of both the gene deletion mutant and the reference strain.

View Article and Find Full Text PDF

: Hemophilia A is an X-linked recessive illness produced by a deficiency of coagulation factor VIII. This study aimed to evaluate serum vitamin D in hemophilic pediatric patients and its correlation with joint health and quality of life. : This case-control study was performed on ninety children under the age of 18 years old and separated into two groups: study group of 45 children with hemophilia A and control group of 45 healthy children at an outpatient pediatric hematology clinic at the Beni-Suef University hospitals.

View Article and Find Full Text PDF

Upgrading the Bioinspired Iron-Polyporphyrin Structures by Abiological Metals Toward New-Generation Reactive Oxygen Biocatalysts.

Nano Lett

December 2024

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.

Developing artificial enzymes based on organic molecules or polymers for reactive oxygen biocatalysis has broad applicability. Here, inspired by heme-based enzyme systems, we construct the abiological iron group metal-based polyporphyrin (Ru/Os-coordinated porphyrin-based biocatalyst, Ru/Os-PorBC) to serve as a new generation of efficient and versatile reactive oxygen species (ROS)-related biocatalyst. Due to the structural benefits, including excellent electron configuration, appropriate bandgap, and optimized adsorption and activation of reaction intermediates, Ru/Os-PorBC shows unparalleled ROS-production activities regarding maximum reaction rate and turnover numbers, which also demonstrates superior pH and temperature adaptability compared to natural enzymes.

View Article and Find Full Text PDF

Pyrrolnitrin, a potent antifungal compound originally discovered in Pseudomonas strains, is biosynthesized through a secondary metabolic pathway involving four key enzymes. Central to this process is PrnB, a heme enzyme that catalyzes the complex transformation of 7-Cl-L-tryptophan. Despite its structural similarity to indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) and its classification within the histidine-ligated heme-dependent aromatic oxygenase (HDAO) superfamily, PrnB has remained relatively unexplored due to challenges in reconstituting its in vitro activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!