Nanocellulose isolation from lignocellulose is a tedious and expensive process with high energy and harsh chemical requirements, primarily due to the recalcitrance of the substrate, which otherwise would have been cost-effective due to its abundance. Replacing the chemical steps with biocatalytic processes offers opportunities to solve this bottleneck to a certain extent due to the enzymes substrate specificity and mild reaction chemistry. In this work, we demonstrate the isolation of sulphate-free nanocellulose from organosolv pretreated birch biomass using different glycosyl-hydrolases, along with accessory oxidative enzymes including a lytic polysaccharide monooxygenase (LPMO). The suggested process produced colloidal nanocellulose suspensions (ζ-potential -19.4 mV) with particles of 7-20 nm diameter, high carboxylate content and improved thermostability (T = 301 °C, T = 337 °C). Nanocelluloses were subjected to post-modification using LPMOs of different regioselectivity. The sample from chemical route was the least favorable for LPMO to enhance the carboxylate content, while that from the C1-specific LPMO treatment showed the highest increase in carboxylate content.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.04.136DOI Listing

Publication Analysis

Top Keywords

carboxylate content
12
isolation modification
4
modification nano-scale
4
nano-scale cellulose
4
cellulose organosolv-treated
4
organosolv-treated birch
4
birch synergistic
4
synergistic activity
4
lpmo
4
activity lpmo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!