The rapid expansion of global trade and human activities has resulted in a massive increase in wastewater pollution into the atmosphere. Suspended solids, organic and inorganic particles, dissolved solids, heavy metals, dyes, and other impurities contained in wastewater from various sources are toxic to the atmosphere and pose serious health risks to humans and animals. Coagulation-flocculation technology is commonly used in wastewater treatment to remove cell debris, colloids, and contaminants in a comfortable and effective manner. Flocculants, both organic and inorganic, have long been used in wastewater treatment. However, because of their low performance, non-biodegradability, and associated health risks, their use has been limited. The use of eco-friendly bioflocculants in wastewater treatment has become essential due to the health implications of chemical flocculants. Because of their availability, biodegradability, and protection, plant-derived coagulants/flocculants and plant-based grafted bioflocculants have recently made significant progress in wastewater treatment. This study will undoubtedly provide a clearer understanding of the current state, challenges, and solutions for bioflocculation in wastewater remediation using green materials for the sake of a cleaner climate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2021.100 | DOI Listing |
Biotechnol Notes
December 2024
Department of Chemistry, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, KwaDlangezwa, 3886, South Africa.
Nanotechnology is a rapidly expanding field with diverse healthcare, agriculture, and industry applications. Central to this discipline is manipulating materials at the nanoscale, particularly nanoparticles (NPs) ranging from 1 to 100 nm. These NPs can be synthesized through various methods, including chemical, physical, and biological processes.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Chemistry, University of Tartu, 14a Ravila St., 50411, Tartu, Estonia.
Elevated concentrations of pharmaceutically active compounds (PhACs) in the water bodies are posing a serious threat to the aquatic microbiota and other organisms. In this context, anaerobic ammonium oxidizing (anammox) bacteria carry a great potential to degrade PhACs through their innate metabolic pathways. This study investigates the influence of short-term exposure to lower and higher concentrations (0.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry, Nazarbayev University, Astana, 010000, Kazakhstan.
The rapid growth in the global population has led to increased environmental pollution and energy demands, exacerbating the issue of environmental contamination. This contamination is significantly impacted by various types of pesticides found in water sources, which pose serious health risks to humans, animals, and aquatic ecosystems. In response, extensive research into water treatment technologies has been conducted, focusing on efficient methods to remove these pollutants, with advanced oxidation processes and the utilization of tungsten trioxide (WO) as a photocatalyst showing promising results.
View Article and Find Full Text PDFCurr Org Synth
January 2025
Laboratoire de Chimie Organique (LR17ES08), Faculté des Sciences de Sfax, University of Sfax, Route de Soukra Km 3.5, BP 1171, 3000, Sfax, Tunisia.
Aim And Objective: It is well established that 4H-pyran derivatives hold a significant position in synthetic organic chemistry due to their diverse biological and pharmacological properties. This work aims to introduce a novel synthetic pathway for highly functionalized 4H-pyran derivatives, achieved through a 1,4-Michael addition followed by a cascade cyclization. This reaction is catalyzed by LiOH·H2O under ultrasonic irradiation in water, offering an efficient and environmentally friendly approach.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, University of North Texas1508 W Mulberry St, Denton, TX, 76201, USA.
Efficient removal of TcO from radioactive effluents while recovering drinking water remains a challenge. Herein, an excellent ReO (a nonradioactive surrogate of TcO ) scavenger is presented through covalently bonding imidazolium poly(ionic liquids) polymers with an ionic porous aromatic framework (iPAF), namely iPAF-P67, following an adsorption-site density-addition strategy. It shows rapid sorption kinetics, high uptake capacity, and exceptional selectivity toward ReO .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!