The bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), belonging to Xanthomonas sp., causes one of the most destructive vascular diseases in rice worldwide, particularly in Asia and Africa. To better understand Xoo pathogenesis, we performed genome sequencing of the Korea race 1 strain DY89031 (J18) and analyzed the phylogenetic tree of 63 Xoo strains. We found that the rich diversity of evolutionary features is likely associated with the rice cultivation regions. Further, virulence effector proteins secreted by the type III secretion system (T3SS) of Xoo showed pathogenesis divergence. The genome of DY89031 shows a remarkable difference from that of the widely prevailed Philippines race 6 strain PXO99A, which is avirulent to rice Xa21, a well-known disease resistance (R) gene that can be broken down by DY89031. Interestingly, plant inoculation experiments with the PXO99A transformants expressing the DY89031 genes enabled us to identify additional TAL (transcription activator-like) and non-TAL effectors that may support DY89031-specific virulence. Characterization of DY89031 genome and identification of new effectors will facilitate the investigation of the rice-Xoo interaction and new mechanisms involved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11427-020-1917-x | DOI Listing |
BMC Res Notes
January 2025
Department of Computer Engineering, Chungbuk National University, Chungdae-ro 1, Cheongju, 28644, Republic of Korea.
Background: Drug response prediction can infer the relationship between an individual's genetic profile and a drug, which can be used to determine the choice of treatment for an individual patient. Prediction of drug response is recently being performed using machine learning technology. However, high-throughput sequencing data produces thousands of features per patient.
View Article and Find Full Text PDFVirol J
January 2025
Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for in the Eastern Mediterranean Region, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia.
Background: Primary Immunodeficiency disorders (PID) can increase the risk of severe COVID-19 and prolonged infection. This study investigates the duration of SARS-CoV-2 excretion and the genetic evolution of the virus in pediatric PID patients as compared to immunocompetent (IC) patients.
Materials And Methods: A total of 40 nasopharyngeal and 24 stool samples were obtained from five PID and ten IC children.
Vet Res
January 2025
Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
Varicellovirus equidalpha 1, formerly known as Equid alphaherpesvirus 1 (EHV-1), is highly prevalent and can lead to various problems, such as respiratory problems, abortion, neonatal foal death, and neurological disorders. The latter is known as equine herpes myeloencephalopathy (EHM). Cases of EHM have significantly increased since the beginning of the twenty-first century.
View Article and Find Full Text PDFBMC Biol
January 2025
CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
Background: Lindaspio polybranchiata, a member of the Spionidae family, has been reported at the Lingshui Cold Seep, where it formed a dense population around this nascent methane vent. We sequenced and assembled the genome of L. polybranchiata and performed comparative genomic analyses to investigate the genetic basis of adaptation to the deep sea.
View Article and Find Full Text PDFJ Transl Med
January 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, No.651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
Background: HER2-targeted antibody-drug conjugates (ADCs) have revolutionized the treatment landscape of metastatic breast cancer. However, the efficacy of these therapies may be compromised by genomic alterations. Hence, this study aims to identify factors predicting sensitivity to HER2 ADC in metastatic breast cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!