Enhanced adsorption properties of organic ZnCr-LDH synthesized by soft template method for anionic dyes.

Environ Sci Pollut Res Int

School of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China.

Published: September 2021

Organic ZnCr-LDH (ST-LDH) was synthesized by a facile one-step hydrothermal technique using methyl orange (MO) as a soft template agent, which can efficiently remove methyl orange (MO), Congo red (CR), and orange II (OII) from aqueous solution. The microstructure of ST-LDH by modifying changed obviously, from the cellular structure to the stacking structure formed by the face-face contact of hydrotalcite nanosheets, which resulted in much more exchangeable nitrate ions to remain in the interlayer space. The pre-insertion of benzene sulfonate as a pillar expanded the interlayer gallery, which facilitated the pollutant anions (MO, CR, and OII) into the interlayer of LDH in the subsequent adsorption process. The maximum adsorption capacity of ST-LDH for MO, CR, and OII was 4200.8 mg/g, 1252.0 mg/g, and 1670.6 mg/g, respectively, which is approximately 1.86 times, 1.8 times, and 2.32 times that of the pristine NO-LDH, respectively. The removal mechanism of anionic dyes was determined as anion exchange between NO anions and dye molecules. The adsorption behavior for MO and OII is multilayer adsorption, while the adsorption behavior for CR is monolayer adsorption. The adsorption process mainly was controlled by the chemical bonding between the dye molecules and adsorbent active sites. The LDH can be effectively regenerated by photocatalysis after MO adsorption. The ST-LDH has a great potential to be used as a high-efficient adsorbent to remove anionic dyes from aqueous solution. The schematic illustration of the synthetic process of soft template agent modified and unmodified hydrotalcites by one-pot hydrothermal method and the adsorption process of MO by ST-LDH were shown in Fig. 12. Modified hydrotalcite (ST-LDH) was prepared using methyl orange (MO) as a soft template agent. Compared with unmodified hydrotalcite (NO-LDH), the insertion of benzene sulfonate anions into the hydrotalcite layer resulted in the increase of the interlayer spacing from 8.269 to 8.654Å. The LDH host structure pre-intercalated by benzene sulfonate anions evolved into pillared materials in interlayer; benzene sulfonate anions as a column expanded the interlayer spacing of (003) base plane, which facilitated the pollutant anions (MO, CR, and OII) into the interlayer of ST-LDH and exchanged with NO anion in the subsequent adsorption process. It can be inferred that in the process of modification hydrotalcite by benzene sulfonate, a small amount of benzene sulfonate anions pre-inserted into the gallery of hydrotalcite with a monolayer model in the process of hydrotalcite modification, and its inclination angle is calculated to be about 29.1°. After ST-LDH sample adsorbed the MO molecules, dye molecules intercalated into the LDH host, and successful exchange with NO anions, the d value increased to 24.78 Å. A large amount of MO anions were intercalated into the gallery of ST-LDH with a bilayer model according to the Freundlich isotherm model, and the tilting angle increases to 53.6°. The adsorption capacity of MO by ST-LDH was significantly enhanced to 4200.8 mg/g, which was much higher than that of NO-LDH (2252.8 mg/g). Schematic illustration of the synthetic process of LDH materials and adsorption process of MO by ST-LDH.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-14035-wDOI Listing

Publication Analysis

Top Keywords

benzene sulfonate
24
adsorption process
20
soft template
16
sulfonate anions
16
anionic dyes
12
methyl orange
12
template agent
12
adsorption
12
dye molecules
12
st-ldh
11

Similar Publications

Sulfate and sulfonate compounds are extensively used as anionic surfactants in personal care products (PCPs), which might pose adverse potential to human health. However, available research mostly identified certain subsets of sulfated and sulfonated surfactants based on target analysis. In this study, we developed a comprehensive nontarget strategy for identification of sulfated and sulfonated surfactants in PCPs using UHPLCHRMS supplemented by an in-lab R script based on characteristic fragment ions and sulfur isotope patterns.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is characterized by uncontrolled, chronic relapsing inflammation in the gastrointestinal tract and has become a global healthcare problem. Here, we aimed to illustrate the anti-inflammatory activity and the underlying mechanism of methyl 3-bromo-4,5-dihydroxybenzoate (MBD), a compound derived from marine organisms, especially in IBD, using a zebrafish model. The results indicated that MBD could inhibit the inflammatory responses induced by CuSO, tail amputation and LPS in zebrafish.

View Article and Find Full Text PDF

A Pt(II) aqua complex supported by mesoporous silica nanoparticle (MSN)-immobilized sulfonated CNN pincer ligand featuring a rigid SiO tether was prepared. This hybrid material was tested as a catalyst in H/D exchange reactions of C(sp)-H bonds of selected aromatic substrates and DO-2,2,2-trifluoroethanol- (TFE-) mixtures or CDCOD acting as a source of exchangeable deuterium. The catalyst immobilization served as a means to not only enable the catalyst's recyclability but also minimize the coordination of sulfonate groups and the metal centers originating from different catalyst's moieties that would preserve reactive Pt(OH) fragments needed for catalytic C-H bond activation.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on developing a green and effective pesticide formulation using nanoemulsions, including adjuvants like Calcium Alkyl Benzene Sulphonate (Atlox 4838B) and trisiloxane ethoxylate (ARGAL), aimed at targeting the pest Sitophilus oryzae.
  • Results indicate that all formulations achieved nanoscale droplets, with scanning electron microscopy revealing their spherical shapes, while dynamic light scattering showed variations in size based on the presence of adjuvants.
  • The nanoemulsions demonstrated good stability under various conditions, with most formulations having acidic to neutral pH levels, and adjuvants enhanced their stability by altering droplet characteristics and increasing kinetic stability.
View Article and Find Full Text PDF

Recent advancements in polymer materials have enabled the synthesis of bio-based monomers from renewable resources, promoting sustainable alternatives to fossil-based materials. This study presents a novel zwitterionic surfactant, SF, derived from 10-undecenoic acid obtained from castor oil through a four-step reaction, achieving a yield of 78%. SF has a critical micelle concentration (CMC) of 1235 mg/L, slightly higher than the commercial anionic surfactant Rhodacal DS-4 (sodium dodecyl benzene sulfonate), and effectively stabilizes monomer droplets, leading to excellent conversion and stable latex formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!