Risks and survival times of ventriculoperitoneal (VP) shunts implanted due to hydrocephalus after craniotomies for brain tumors are largely unknown. The purpose of this study was to determine the overall timing of VP shunting and its failure after craniotomy for brain tumors in adults. The authors also wished to explore risk factors for early VP shunt failure (within 90 days). A population-based consecutive patient cohort of all craniotomies for intracranial tumors leading to VP shunt dependency in adults (> 18 years) from 2004 to 2013 was studied. Patients with pre-existing VP shunts prior to craniotomy were excluded. The survival time of VP shunts, i.e., the shunt longevity, was calculated from the day of shunt insertion post-craniotomy for a brain tumor until the day of shunt revision requiring replacement or removal of the shunt system. Out of 4774 craniotomies, 85 patients became VP shunt-dependent (1.8% of craniotomies). Median time from craniotomy to VP shunting was 1.9 months. Patients with hydrocephalus prior to tumor resection (N = 39) had significantly shorter time to shunt insertion than those without (N = 46) (p < 0.001), but there was no significant difference with respect to early shunt failure. Median time from shunt insertion to shunt failure was 20 days (range 1-35). At 90 days, 17 patients (20%) had confirmed shunt failure. Patient age, sex, tumor location, primary/secondary craniotomy, extra-axial/intra-axial tumor, ventricular entry, post-craniotomy bleeding, and infection did not show statistical significance. The risk of early shunt failure (within 90 days) of shunts after craniotomies for brain tumors was 20%. This study can serve as benchmark for future studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827213 | PMC |
http://dx.doi.org/10.1007/s10143-021-01549-7 | DOI Listing |
Discov Oncol
January 2025
Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.
View Article and Find Full Text PDFActa Neurochir (Wien)
January 2025
Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India.
Background: Reaching parenchymal segments of the lateral lenticulostriate artery (LSA) perforators, which represent the medial resection limit in insular gliomas (IG), remains a challenge. The currently described methods are indirect and sometimes, imprecise.
Methods: We report an antegrade direct skeletonization technique to identify these tiny arteries at the medial end of IGs with an illustrative case of grade 2 astrocytoma.
Pediatr Blood Cancer
January 2025
Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya.
Background: Pediatric brain tumors are understudied compared to other pediatric malignancies in low- and middle-income countries. Care delivery is inherently dependent on collaboration between multiple departments. This study aimed to present baseline data of pediatric neuro-oncology care in Western Kenya and illustrate barriers and facilitators of multidisciplinary care.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Modern radiotherapy frequently employs radiosensitizers for radiation dose deposition and triggers an immunomodulatory effect to enhance tumor destruction. However, developing glioma-targeted sensitizers remains challenging due to the blood-brain barrier (BBB) and multicomponent instability. This study aims to green-synthesize transferrin-bismuth nanoparticles (TBNPs) as biosafe radiosensitizers to enhance X-ray absorption by tumors and stimulate the immune response for glioma therapy.
View Article and Find Full Text PDFSmall
January 2025
Cancer Hospital of Dalian University of Technology, Dalian University of Technology, Shenyang, 110042, China.
Glioblastoma (GBM), the most malignant brain tumor with high prevalence, remains highly resistant to the existing immunotherapies due to the significant immunosuppression within tumor microenvironment (TME), predominantly manipulated by M2-phenotypic tumor-associated macrophages (M2-TAMs). Here in this work, an M2-TAMs targeted nano-reprogrammers, MG5-S-IMDQ, is established by decorating the mannose molecule as the targeting moiety as well as the toll-like receptor (TLR) 7/8 agonist, imidazoquinoline (IMDQ) on the dendrimeric nanoscaffold. MG5-S-IMDQ demonstrated an excellent capacity of penetrating the blood-brain barrier (BBB) as well as selectively targeting M2-TAMs in the GBM microenvironment, leading to a phenotype transformation and function restoration of TAMs shown as heightened phagocytic activity toward tumor cells, enhanced cytotoxic effects, and improved tumor antigen cross-presentation capability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!