A new class of cyclazine analogues with periphery reminiscent of an aza[10]annulene framework, tethered internally by an sp carbon, is presented. In depth structure analysis based on NMR and X-ray diffraction data gave a deeper insight into the effect of electron delocalization on their structure and properties. A characteristic change in chemical shift positions suggested an aromatic ring current in these systems. Attractive emission properties in solid and solution states involving charge transfer is another highlight.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.1c00827 | DOI Listing |
Adv Healthc Mater
December 2024
Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, South Korea.
One of the most significant challenges for image-guided cancer-targeted therapy is to develop multifunctional optical contrast agents enabling simultaneous targeting and therapy. Herein, a feasible strategy is based on the incorporation of therapeutic moieties into the non-delocalized structure of polymethine indocyanines, known as the "structure-inherent targeting" concept. By possessing a rigid chloro-cyclohexenyl ring in the heptamethine cyanine backbone, a new type of multifunctional near-infrared fluorescent dye, Ph790H, that targets tumor without the need for additional targeting ligands is synthesized.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Institut Chimie radicalaire ICR-UMR 7273, Facult� de Saint jerome, avenue Escadrille-Normandie-Niemen, service 562, 13397, Marseille, FRANCE.
Efforts to understand radical stability have led to considerable progress in radical chemistry. In this article, we investigated a novel approach to enhancing the radical stability of carbon-centered radicals through space electron delocalization within [2,2]-paracyclophanes. Alkoxyamines possessing a paracyclophane scaffold exploit face-to-face π-π-interactions between the aromatic rings to effectively lower bond dissociation energy (BDE) for NO-C bond homolysis.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China.
Proton transfer plays a crucial role in various chemical and biological processes. A major theoretical challenge in simulating proton transfer arises from the quantum nature of the proton. The constrained nuclear-electronic orbital (CNEO) framework was recently developed to efficiently and accurately account for nuclear quantum effects, particularly quantum nuclear delocalization effects, in quantum chemistry calculations and molecular dynamics simulations.
View Article and Find Full Text PDFChem Sci
December 2024
Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
Development of chiral organic materials with a strong chiroptical response is crucial to advance technologies based on circularly polarized luminescence, enantioselective sensing, or unique optical signatures in anti-counterfeiting. The progress in the field is hampered by the lack of structure-property relationships that would help designing new chiral molecules. Here, we address this challenge by synthesis and investigation of two chiral macrocycles that integrate in their structure a pseudo-meta [2.
View Article and Find Full Text PDFSmall
December 2024
School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
Plasmonic metasurfaces (PMs) exhibit extraordinary optical response due to surface lattice resonance, which is crucial for realizing high-performance photovoltaic device preparation. In this work, a nanopore confinement effect-mediated MOF@UsAu is proposed as a novel PM heterojunction for photovoltaic interfaces. 2D MOFs have the unique advantage of a tunable and ordered porous structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!